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Abstract. The focus of this dissertation is on matrix decompositions that use a
limited amount of computer memory, thereby allowing problems with a very large number
of variables to be solved. Speci�cally, we will focus on two applications areas: optimization
and information retrieval.

We introduce a general algebraic form for the matrix update in limited-memory quasi-
Newton methods. Many well-known methods such as limited-memoryBroyden Family meth-
ods satisfy the general form. We are able to prove several results about methods which sat-
isfy the general form. In particular, we show that the only limited-memory Broyden Family
method (using exact line searches) that is guaranteed to terminate within n iterations on
an n-dimensional strictly convex quadratic is the limited-memory BFGS method. Further-
more, we are able to introduce several new variations on the limited-memory BFGS method
that retain the quadratic termination property. We also have a new result that shows that
full-memory Broyden Family methods (using exact line searches) that skip p updates to the
quasi-Newton matrix will terminate in no more than n+p steps on an n-dimensional strictly
convex quadratic. We propose several new variations on the limited-memory BFGS method
and test these on standard test problems.

We also introduce and test a new method for a process known as Latent Semantic In-
dexing (LSI) for information retrieval. The new method replaces the singular value matrix
decomposition (SVD) at the heart of LSI with a semi-discrete matrix decomposition (SDD).
We show several convergence results for the SDD and compare some strategies for comput-
ing it on general matrices. We also compare the SVD-based LSI to the SDD-based LSI and
show that the SDD-based method has a faster query computation time and requires signif-
icantly less storage. We also propose and test several SDD-updating strategies for adding
new documents to the collection.
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Chapter 1

Introduction

The focus of this dissertation is on matrix decompositions that use a limited amount of
computer memory, thereby allowing problems with a very large number of variables to be
solved. Speci�cally, we will focus on two applications areas: optimization (Chapters 2 { 5)
and information retrieval (Chapters 6 { 8).

The goal in optimization is to �nd the minimum of a real-valued function of n variables.
Most methods for solving minimization problems fall into the category of (iterative) quasi-
Newton methods. At each iteration of a quasi-Newton method, we generate a search direction
using the gradient and an approximation to the Hessian (or its inverse), choose a step length
along the search direction, compute the next iterate and gradient, and choose a new Hessian
approximation. Di�erent choices for the Hessian approximation yield di�erent methods.
We are particularly interested in choices for the approximate Hessian that do not explicitly
store a dense matrix. Many methods are able to construct a Hessian approximation using
only a few vectors - these methods are loosely grouped under the title of limited-memory
quasi-Newton methods. Chapter 2 reviews both full- and limited-memory quasi-Newton
methods.

In Chapter 3, we present a new general algebraic form for the Hessian approximation
in quasi-Newton methods. The general algebraic form incorporates both full- and limited-
memory methods. The main result speci�es which methods �tting this algebraic form will
terminate within n iterations on an n-dimensional strictly quadratic function (assuming
the line search to determine the step length is exact). This result generalizes and extends
existing results about quadratic termination. One consequence of this result is that we now
have quadratic termination results for limited-memory Broyden Family methods. Broyden
Family methods are the most popular methods for solving small optimization problems. One
member of the Broyden Family, BFGS, has a limited-memory analog (L-BFGS) which is very
popular for solving large optimization problems. L-BFGS is known to have the quadratic
termination property, but nothing was known about the other limited-memory Broyden
Family methods. Our result shows that, in fact, BFGS is the only Broyden Family method
to have a limited-memory analog with the quadratic termination property. Furthermore, we
can derive new variations to L-BFGS which retain the quadratic termination property.

Chapter 4 focuses on a particular aspect of full-memory Broyden Class methods. We

1



show that if we skip p updates to the Hessian approximation in a full-memory Broyden
Family method (assuming the line search to determine the step length is exact), then the
algorithm will terminate in no more than n + p iterations on an n-dimensional strictly
quadratic function.

Chapter 5 describes some new variations on the L-BFGS method and tests them on
optimization problems from a standard problem collection. We will see that these variations
have promise.

In Chapter 6 we explore a matrix approximation method that we call the semi-discrete
decomposition (SDD). The SDD approximates an m�n matrix via a sum of rank-1 matrices
of the form dxyT where d is a positive real scalar, x is anm-vector whose entries are restricted
to the set f�1; 0; 1g and y is an n vector whose entries are also restricted to the set f�1; 0; 1g.
We describe the SDD and how to construct it. We present new results which show that the
approximation converges linearly to the true matrix, and we test methods for constructing
the approximation.

In Chapter 7 we digress to describe the vector space method for information retrieval.
In information retrieval, we wish to match a query to relevant documents in a collection.
The vector space method represents the document collection as a matrix, called the term-
document matrix, and the query as a vector. The (i; j)th entry of the term-document
matrix is nonzero only if term i appears in document j. The exact value of the entry can
be determined via numerous di�erent schemes that are detailed in the chapter, but think
of the value as a measurement of importance. Similarly, the ith entry of the query vector
is a measurement of the ith term's importance to the query and is nonzero only if the ith
term appears in the query. The jth column of the term-document matrix represents the jth
document, and the score of that document for a given query is determined by computing
the inner product of the document vector and the query vector. The documents can then be
ranked by their inner products with the query. We describe this in more detail and survey
recent improvements on this model in the chapter.

One major improvement on the vector space method is Latent Semantic Indexing (LSI).
LSI is special because it has the ability to automatically recognize inter-word relationships In
Chapter 8, we describe LSI in detail and show how the SDD can be used to drastically improve
LSI with respect to storage requirements and time to perform a query. The main idea behind
LSI is the replacement of the term-document matrix used in the vector space model with a
low-rank approximation generated via the singular value decomposition (SVD). The main
di�culty in this approach is that even a low-rank SVD requires substantially more storage
than the original term-document matrix (which is sparse). Replacing the SVD with the SDD
reduces the storage requirements substantially; in fact, the SDD approximation requires less
storage than the original term-document matrix. The time for the query computation is also
reduced. We also show how the SDD approximation can be updated in the event that new
documents are added.

2



Chapter 2

Quasi-Newton Methods for Optimization

The next four chapters consist of material taken (sometimes verbatim) from Kolda, O'Leary
and Nazareth [40].

2.1 Introduction

The problem we wish to solve in optimization is the following:

min
x2<n

f(x);

where the function f maps<n to <. We will assume that f is twice continuously di�erentiable
and let g and G denote its gradient and Hessian respectively. The solution, x�, is called the
minimizer, and f(x�) is called the minimum. Speci�cally, we are looking for an x� such that
f(x�) � f(x) for all x in a neighborhood of x�, in other words, for a local minimizer.

We will focus on quasi-Newton iterative methods for the solution of this problem, and
more precisely, we are interested in techniques that are computationally feasible for large
problems. Figure 2.1 outlines a general quasi-Newton method. Here xk denotes the kth
iterate, gk � g(xk), and Hk is the n� n quasi-Newton matrix.

At each iteration of a quasi-Newton method we model the function using a quadratic

f(xk + d) � f(xk) + dTgk +
1

2
dTH�1

k d � �k(d): (2.1)

The quadratic �k is minimized when its gradient with respect to d is zero, that is,

gk +H�1
k d = 0;

and Hk is positive de�nite1. In that case, we can solve for the optimal d, denoted by dk:

dk = �Hkgk:

1Hk may not always be chosen to be positive de�nite, but here we are just establishing the framework

for the general method.
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1. Let x0 be the starting point. Compute g0.

2. Let H0 be an n� n positive de�nite matrix.

3. k  0.

4. Until convergence do:

(a) Compute dk = �Hkgk.

(b) Choose steplength �k > 0.

(c) Compute xk+1 = xk + �kdk.

(d) Compute gk+1.

(e) Choose quasi-Newton matrix Hk+1.

(f) k  k + 1.

5. End do.

Figure 2.1: Quasi-Newton Method

Although dk is the minimizer of �k, (xk + dk) is not necessarily a minimizer of f in the
direction dk, so we digress for a moment to discuss possible choices for the steplength, �k.

There are three ways we can choose �k:

1. We say a method is perfect if we always choose � so that

f(xk + �kdk) � f(xk + �dk); for all � > 0:

Performing an exact line search at each iteration is generally too expensive to do in
practice; however, perfect methods are interesting from a theoretical point of view.

2. We call a method a direct prediction method if we always choose �k = 1. Direct
prediction methods can work well locally, but often cause problems if the initial starting
point is not su�ciently close to the minimizer.

3. Otherwise we say the method uses an inexact line search. Here, we will accept a
positive steplength � if it satis�es the Wolfe conditions2:

f(x+ �d) � f(x) + !1 � g(x)
Td; (2.2)

g(x+ �d)T d � !2 g(x)
Td; (2.3)

2These are also sometimes referred to as the Goldstein-Armijo conditions.
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where 0 < !1 < !2 < 1. The �rst condition guarantees su�cient decrease in f , and
the second condition safeguards against steplengths being too small. If dk is a descent
direction, then there exists an �k satisfying the Wolfe conditions; furthermore, if we
always choose a descent direction and a steplength satisfying the Wolfe conditions, then
we are guaranteed global convergence (assuming f is bounded below and g is Lipschitz
continuous) [19]. In our experiments, we replace (2.3) with a slightly stronger curvature
condition:

j g(x+ �d)Td j � !2 j g(x)Td j: (2.4)

Our theory will focus primarily on perfect methods but our experiments will use an inexact
line search (see Chapter 5 for further details).

Note that there are two choices to make at each iteration: steplength and quasi-Newton
matrix. We have already discussed some possible ways to choose the steplength. This
research focuses on the choice of the quasi-Newton matrix. For the remainder of this chapter
we will discuss existing quasi-Newton methods and their advantages and disadvantages. In
the next chapter, we will present a result that generalizes some of the results seen here.
Of special interest to us is the performance of these methods on strictly convex quadratic
functions.

2.2 Newton's Method

Newton's method is the basis for quasi-Newton methods, so it is logical to discuss this
method �rst. Here we choose Hk to be [G(xk)]�1, so the model �k is the 2nd order Taylor
expansion of f about xk. Newton's method will �nd the exact minimizer of a strictly convex
quadratic function in only one iteration.

If, for example, we use a backtracking line search strategy which obeys the Wolfe condi-
tions (2.2) and (2.3) with !1 <

1
2 , and always try a step length of one �rst, then Newton's

method is globally convergent3 and the rate of convergence is quadratic [19]. We must check
to be sure that Newton's method always produces a descent direction.

There are also some computational disadvantages for Newton's Method. At each itera-
tion, we must compute the Hessian of f and solve the equation

G(xk) d = �gk: (2.5)

The Hessian may not be analytically available, and even if it is, solving the linear equation
is expensive unless G(xk) has special structure. Furthermore, we are required to store the
n� n matrix G(xk).

The disadvantages of Newton's method make it impractical for large scale optimization.
This research will focus on using other matrices in place of G(xk), but the reader should
also be aware of truncated-Newton methods that solve the Newton equation (2.5) using an

3By globally convergent, we mean that the method converges to some local minimizer from any starting

point whenever f is su�ciently smooth and bounded below.

5



iterative method and �nite-di�erence approximations to approximate the action of G(xk);
see O'Leary [50] or Dembo and Steihaug [18] for more information on this approach.

2.3 Steepest Descent

Compared to Newton's method, the method of steepest descent is at the opposite end of the
spectrum. As its name implies, at each iteration, we take a step in the direction of steepest
descent, that is, �gk. This corresponds to choosing Hk as the identity matrix.

Computationally, this method is attractive because each iteration only requires the com-
putation of the gradient and the calculation of the steplength. Although the work per
iteration is cheap, it requires a large number of iterations to converge to the true solution.
The rate of convergence when using an inexact line search is linear, as compared to quadratic
for Newton's method [19]. Furthermore, on a strictly convex quadratic function, the method
may never �nd the exact minimizer [19].

In the next section we will discuss a method that has approximately the same work per
iteration as steepest descent but performs better.

2.4 Conjugate Gradients

The method of conjugate gradients [35] for minimization is described in Section 8.6 of Lu-
enberger [42].4 In the preconditioned Fletcher-Reeves [26] version with preconditioner H0,
the search direction dk+1 can be expressed as

dk+1 = �
 
I � dkg

T
k

gTk�1gk�1

!
H0gk:

Conjugate gradients terminates in no more than n iterations on a strictly convex quadratic
function [30, 35, 42]. Furthermore, the method is globally convergent if every step satis�es
the strong Wolfe conditions (2.2) and (2.4) with 0 < !1 < !2 <

1
2. [1]

2.5 Broyden Family

The Broyden Family methods [8] use an approximation to the inverse Hessian that is updated
via a rank-1 or rank-2 symmetric update at each iteration. The update is of the form

Hk+1 = �HBFGS
k+1 + (1 � �)HDFP

k+1 ; � 2 <:

The BFGS [8, 29, 23, 60] and DFP [16, 25] updates are given by

HBFGS
k+1 = (I � �ksky

T
k )Hk(I � �kyks

T
k ) + �ksks

T
k ;

4The example in Luenberger requires a restart every n iterations, but we are not making that assumption.
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and

HDFP
k+1 = Hk � Hkyky

T
kHk

yTkHkyk
+ �ksks

T
k ;

where

sk � xk+1 � xk;

yk � gk+1 � gk;

�k � sTk yk:

Every Broyden Family member satis�es the secant condition, that is,

Hk+1yk = sk; (2.6)

and these methods are sometimes referred to as symmetric secant methods [19].
Powell [53] showed that the perfect DFP method has a superlinear rate of convergence,

and Dixon [20] showed that all perfect Broyden Family methods produce exactly the same
search directions at each iteration, assuming that the quasi-Newton matrix is always de�ned.
Thus, perfect Broyden Family methods have a superlinear rate of convergence as long as
the quasi-Newton matrix is de�ned. Furthermore, perfect Broyden Family methods always
terminate in no more than n iterations on a strictly convex quadratic function [54].

If we use an inexact line search satisfying the Wolfe conditions with 0 < !1 < !2 <
1
2
and

choose a step of one whenever possible, then Powell [55] showed that the BFGS method is
globally and superlinearly convergent for any choice of x0 and positive de�nite H0 provided
that f is convex, twice continuously di�erentiable and the set fx : f(x) � f(x0)g is bounded.
These results were later extended to Broyden Family members with � 2 (0; 1] [11]. It is still
an open question whether or not DFP (� = 0) converges superlinearly with an inexact
linesearch [48].

2.6 Limited-Memory Broyden Family

At each iteration in a Broyden Family method, we have an update of the form

Hk+1 = U(Hk; sk; yk):

This establishes a recurrence relation:

Hk+1 = U(Hk; sk; yk)

= U(U(Hk�1; sk�1; yk�1); sk; yk)

= U(U(� � �U(Hk�m+1; sk�m+1; yk�m+1) � � � ; sk�1; yk�1); sk; yk):

If we know Hk�m+1 and the m pairs (sk�m+1; ym�k+1) through (sk; yk) we can reconstruct
Hk+1. We make this a limited-memory method by replacing Hk�m+1 with H0 which is a

7



positive de�nite matrix that requires little storage; for example, the identity matrix. Thus,
the update is given by

Hk+1 = U(U(� � �U(H0; sk�m+1; yk�m+1) � � � ; sk�1; yk�1); sk; yk):

The limited-memory BFGS (L-BFGS) update has a very compact form [47]. It can be
written as

Hk+1 = V T
k�mk+1;k

H0Vk�mk+1;k +
kX

i=k�mk+1

V T
i+1;k

sis
T
i

sTi yi
Vi+1;k; (2.7)

where mk = minfk + 1;mg and

Vik =
kY
j=i

 
I � yis

T
i

sTi yi

!
:

This representation requires only O(mn) storage and the search direction can be computed
implicitly in only O(mn) time [47]. Furthermore, L-BFGS terminates in no more than n
iterations on a strictly convex quadratic function [47] and has been shown to be globally and
linearly convergent on convex problems for any starting point [41].

The other Broyden methods do not reduce to such a nice form in their limited-memory
versions [12] and will be discussed in the next chapter.
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Chapter 3

Quadratic Termination Properties of

Limited-Memory Quasi-Newton Methods

3.1 A General Form for Limited-Memory Quasi-Newton

Updates

Using the notation developed in the previous chapter, we will present a general result
that characterizes perfect quasi-Newton methods that terminate in n iterations on an n-
dimensional strictly convex quadratic. We restrict ourselves to methods with an update of
the form

Hk+1 = 
kP
T
k H0Qk +

mkX
i=1

wikz
T
ik: (3.1)

Here,

1. H0 is an n� n symmetric positive de�nite matrix that remains constant for all k, and

k is a nonzero scalar that iteratively rescales H0.

2. Pk is an n� n matrix that is the product of projection matrices of the form

I � uvT

uTv
; (3.2)

where u 2 spanfy0; : : : ; ykg and v 2 spanfs0; : : : ; sk+1g1, and Qk is an n � n matrix
that is the product of projection matrices of the same form where u is any n-vector
and v 2 spanfs0; : : : ; skg,

3. mk is a nonnegative integer, wik (i = 1; 2; : : : ;mk) is any n-vector, and zik (i =
1; 2; : : : ;mk) is any vector in spanfs0; : : : ; skg.

1Although the vector sk+1 has not yet been explicitly calculated, it may be available implicitly as we will

show for the limited-memory DFP in the proof of Proposition 3.1.

9



We refer to this as the general form. Many known quasi-Newton methods have updates
that can be expressed in the general form (3.1). We do not assume that these quasi-Newton
methods satisfy the secant condition (2.6), nor that Hk+1 is positive de�nite and symmetric.
Symmetric positive de�nite updates are desirable since this guarantees that the quasi-Newton
method produces descent directions. Note that if the update is not positive de�nite, we may
produce a dk such that dTk gk > 0 in which case we choose �k over all negative � rather than
all positive �.

3.1.1 Steepest Descent

The method of steepest descent (see Section 2.3) has an update that can be expressed in the
general form (3.1). For each k we de�ne


k = 1; mk = 0; and Pk = Qk = H0 = I: (3.3)

Note that neither w nor z vectors is speci�ed since mk = 0.

3.1.2 Conjugate Gradients

The (k+1)st update for the conjugate gradient method (see Section 2.4) with preconditioner
H0 has an update that can be expressed in the general form (3.1) with


k = 1; mk = 0; Pk = I � yks
T
k

sTk yk
; and Qk = I: (3.4)

3.1.3 L-BFGS

The L-BFGS update (see Section 2.6) has an update that can be expressed in the general
form (3.1) if at iteration k we choose


k = 1; mk = minfk + 1;mg; (3.5)

Pk = Qk = Vk�mk+1;k; and

wik = zik =
(Vk�mk+i+1;k)

T (sk�mk+i)q
(sk�mk+i)

T (yk�mk+i)
:

Observe that Pk; Qk and zik (i = 1; : : : ;mk) all obey the constraints imposed on their con-
struction.

3.1.4 Limited-Memory DFP

We will de�ne limited-memoryDFP (L-DFP) using the framework established in Section 2.6.
Let m � 1 and let mk = minfk + 1;mg. In order to de�ne the L-DFP update we need to
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create a sequence of auxiliary matrices for i = 0; : : : ;mk. Let

Ĥ
(0)
k+1 = H0; and

Ĥ
(i)
k+1 = UDFP(Ĥ

(i�1)
k+1 ; sk�mk+i; yk�mk+i);

where

UDFP(H; s; y) = H � HyyTH

yTHy
+
ssT

sTy
:

The matrix Ĥ
(mk)
k+1 is the result of applying the DFP update mk times to the matrix H0 with

the mk most recent (s; y) pairs. Thus, the (k + 1)st L-DFP matrix is given by

Hk+1 = Ĥ
(mk)
k+1 :

To simplify our description, note that Ĥ
(i)
k+1 can be rewritten as

Ĥ
(i)
k+1 =

0
@I � Ĥ

(i�1)
k+1 yk�mk+iy

T
k�mk+i

yTk�mk+i
Ĥ

(i�1)
k+1 yk�mk+i

1
A Ĥ

(i�1)
k+1 +

sk�mk+is
T
k�mk+i

sTk�mk+i
yk�mk+i

=
�
V̂
(i)
0k

�T
H0 +

iX
j=1

�
V̂
(i)
jk

�T sk�mk+js
T
k�mk+j

sTk�mk+j
yk�mk+j

;

for i � 1 where

V̂
(i)
jk =

iY
l=j+1

2
64I � yk�mk+l

�
H

(l�1)
k+1 yk�mk+l

�T
yTk�mk+l

H
(l�1)
k+1 yk�mk+l

3
75 :

Note that we de�ne the product to be taken from left to right, that is,

kY
i=j

Bj =

(
Bj �Bj+1 � � �Bk if j � k;
I otherwise.

Thus Hk+1 can be written as

Hk+1 = V T
0kH0 +

mkX
i=1

 
V T
ik

sk�mk+is
T
k�mk+i

sTk�mk+i
yk�mk+i

!
; (3.6)

where

Vik =
mkY

j=i+1

2
64I � yk�mk+j

�
Ĥ

(j�1)
k+1 yk�mk+j

�T
yTk�mk+j

Ĥ
(j�1)
k+1 yk�mk+j

3
75 :

Equation (3.6) �ts the general form (3.1) with the following choices:


k = 1; Pk = V0k; Qk = I; (3.7)

wik = V T
ik sk�mk+i=(s

T
k�mk+i

yk�mk+i); and zik = sk�mk+i:
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Except for the choice of Pk, it is trivial to verify that the choices satisfy the general form (3.1).
To prove that Pk satis�es the requirements, we need to show

Ĥ
(i�1)
k+1 yk�mk+i 2 spanfs0; : : : ; sk+1g; for i = 1; : : : ;mk and all k: (3.8)

Proposition 3.1 For limited-memory DFP, the following three conditions hold for each
value of k:

Ĥ
(i�1)
k+1 yk�mk+i 2 spanfs0; : : : ; skg for i = 1; : : : ;mk � 1 and (3.9)

Ĥ
(i�1)
k+1 yk�mk+i 2 spanfs0; : : : ; sk;H0gk+1g for i = mk; and (3.10)

spanfH0g0; : : : ;H0gk+1g � spanfs0; : : : ; sk+1g: (3.11)

Proof. We will prove this via induction. Suppose k = 0. Then m0 = 1. We have

Ĥ
(0)
k+1yk = H0y0 = H0g1 �H0g0 2 spanfs0;H0g1g:

(Recall that spanfs0g is trivially equal to spanfH0g0g.) Furthermore,

s1 = ��1H1g1

= ��1
"
H0g1 � yT0H0g1

yT0H0y0
(H0g1 �H0g0) +

sT0 g1
yT0 s0

s0

#
:

So we can conclude, 
1� yT0H0g1

yT0H0y0

!
H0g1 = �

"
1

�1
s1 +

yT0H0g1
yT0H0y0

H0g0 +
sT0 g1
yT0 s0

s0

#
:

Hence, H0g1 2 spanfs0; s1g, and so the base case holds.
Assume that

Ĥ
(i�1)
k yk�1�mk�1+i 2 spanfs0; : : : ; sk�1g for i = 1; : : : ;mk�1 � 1; and

Ĥ
(i�1)
k yk�1�mk�1+i 2 spanfs0; : : : ; sk�1;H0gkg for i = mk�1; and

spanfH0g0; : : : ;H0gkg � spanfs0; : : : ; skg:
Using the induction assumption, we will show that (3.9) { (3.11) holds for (k+1). We show
(3.9) for i = 1; : : : ;mk � 1. For i = 1 (assume mk > i),

Ĥ
(0)
k+1yk�mk+1 = H0yk�mk+1 = H0gk�mk+2 �H0gk�mk+1:

Using the induction hypotheses, we get that

Ĥ
(0)
k+1yk�mk+1 2 spanfs0; : : : ; skg:

Assume that
Ĥ

(j)
k+1yk�mk+j+1 2 spanfs0; : : : ; skg (3.12)
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for j between 1 and i� 2, i � mk � 2. Then,

Ĥ
(i�1)
k+1 yk�mk+i =

�
V̂
(i�1)
0k

�T
H0yk�mk+i

+
i�1X
j=1

sTk�mk+j�1
yk�mk+i

sTk�mk+j�1
yk�mk+j�1

�
V̂
(i�1)
jk

�T
sk�mk+j�1:

For values of i � mk � 1,
�
V̂
(i�1)
jk

�T
maps any vector v into

spanfv; Ĥ(0)
k+1yk�mk+1; : : : ; Ĥ

(i�2)
k+1 yk�2g:

and so Ĥ
(i�1)
k+1 yk�mk+i is in

spanfH0yk�mk+i; Ĥ
(0)
k+1yk�mk+1; : : : ; Ĥ

(i�2)
k+1 yk�2; sk�mk+1; : : : ; sk�2g:

Using the induction hypothesis and (3.12), we get

Ĥ
(i�1)
k+1 yk�mk+i 2 spanfs0; : : : ; skg;

and we can conclude that (3.9) is true for i = 1; : : : ;mk � 1 in the (k + 1)st case. If i = mk,
then

Ĥ
(mk�1)
k+1 yk 2 spanfH0yk; Ĥ

(0)
k+1yk�mk+1; : : : ; Ĥ

(mk�2)
k+1 yk�1; sk�mk+1; : : : ; sk�1g;

so
Ĥ

(mk�1)
k+1 yk 2 spanfs0; : : : ; sk;H0gk+1g:

Hence (3.10) is true for (k + 1).
Now, consider

sk+1 = ��k+1Hk+1gk+1

= V T
0kH0gk+1 +

mkX
i=1

sTk�mk+i
gk+1

sTk�mk+i
yk�mk+i

V T
ik sk�mk+i:

Using the structure of Vjk and (3.9) we see that

H0gk+1 2 spanfs0; : : : ; sk+1g:

Hence, (3.11) also holds for (k + 1). 2
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3.1.5 Limited-Memory Broyden Family

The Broyden Family is described in Section 2.5. The parameter � is usually restricted
to values that are guaranteed to produce a positive de�nite update, although recent work
with SR1, a Broyden Family method, by Khalfan, Byrd and Schnabel [36] may change this
practice. No restriction on � is necessary for the development of our theory. The Broyden
Family update can be expressed as

Hk+1 = Hk +
sks

T
k

sTk yk
� Hkyky

T
kHk

yTkHkyk

+ � yTkHkyk

 
sk
sTk yk

� Hkyk
yTkHkyk

! 
sk
sTk yk

� Hkyk
yTkHkyk

!T
:

We sketch the explanation of how the full-memory version has an update that can be
expressed in the general form (3.1). The limited-memory case is similar. We can rewrite the
Broyden Family update as follows:

Hk+1 = Hk + (�� 1)
Hkyky

T
k

yTkHkyk
Hk � �

sky
T
k

sTk yk
Hk +

sks
T
k

sTk yk

+ �
yTkHkyk � sksTk

(sTk yk)
2

� �
Hkyks

T
k

sTk yk

=

2
4I �

�
(1 � �)sTk yk �Hkyk + � yTkHkyk � sk

�
yTk

yTkHkyk � sTk yk

3
5Hk

+

" 
1 + �

yTkHkyk
sTk yk

!
sk � �Hkyk

#
sTk
sTk yk

:

Hence,

Hk+1 = V0kH0 +
k+1X
i=1

wikz
T
ik;

where

Vik =
Qk
j=i

�
I � ((1��)sTj yj �Hjyj+� yTj Hjyj �sj)yTj

yTj Hjyj�sTj yj

�
;

wik = Vik

��
1 + �

yTi�1Hi�1yi�1

sTi�1yi�1
si�1

�
� �Hi�1yi�1

�
; and zik =

sTi�1
sTi�1yi�1

:

It is left to the reader to show that Hkyk is in spanfs0; : : : ; sk+1g, and thus the Broyden
Family updates �t the general form (3.1).

3.2 Termination of Limited-Memory Methods

In this section we show that methods �tting the general form (3.1) produce conjugate search
directions (Theorem 3.1) and terminate in n iterations (Corollary 3.1) on a strictly convex
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n-dimensional quadratic if and only if Pk maps spanfy0; : : : ; ykg into spanfy0; : : : ; yk�1g for
each k = 1; 2; : : : ; n. Furthermore, this condition on Pk is satis�ed only if yk is used in its
formation (Corollary 3.2).

Theorem 3.1 Suppose that we apply a quasi-Newton method (Figure 2.1) with an update
that can be expressed in the general form (3.1) to minimize an n-dimensional strictly convex
quadratic function

f(x) =
1

2
xTAx� bTx:

Then for each k, we have

gTk+1sj = 0; for all j = 0; 1; : : : ; k; (3.13)

sTk+1Asj = 0; for all j = 0; 1; : : : ; k; and (3.14)

spanfs0; : : : ; sk+1g = spanfH0g0; : : : ;H0gk+1g; (3.15)

if and only if

Pjyi 2 spanfy0; : : : ; yj�1g; for all i = 0; 1; : : : ; j; j = 0; 1; : : : ; k: (3.16)

Proof. (() Assume that (3.16) holds. We will prove (3.13){(3.15) by induction. Since the
line searches are exact, g1 is orthogonal to s0. Using the fact that P0y0 = 0 from (3.16), and
the fact that zi0 2 spanfs0g implies gT1 zi0 = 0, i = 1; : : : ;mk, we see that s1 is conjugate to
s0 since

sT1As0 = �1d
T
1 y0

= ��1gT1HT
1 y0

= ��1gT1
 

0Q

T
0H0P0 +

m0X
i=1

zi0w
T
i0

!
y0

= ��1
 

0g

T
1 Q

T
0H0P0y0 +

m0X
i=1

gT1 zi0w
T
i0y0

!

= 0:

Lastly, spanfs0g = spanfH0g0g, and so the base case is established.
We will assume that claims (3.13){(3.15) hold for k = 0; 1; : : : ; k̂� 1 and prove that they

also hold for k = k̂.
The vector gk̂+1 is orthogonal to sk̂ since the line search is exact. Using the induction

hypotheses that gk̂ is orthogonal to fs0; : : : ; sk̂�1g and sk̂ is conjugate to fs0; : : : ; sk̂�1g, we
see that for j < k̂,

gT
k̂+1

sj = (gk̂ + yk̂)
T sj = (gk̂ +Ask̂)

T sj = 0:

Hence, (3.13) holds for k = k̂.
To prove (3.14), we note that

sT
k̂+1

Asj = ��k̂+1gTk̂+1HT
k̂+1

yj;
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so it is su�cient to prove that gT
k̂+1

HT
k̂+1

yj = 0 for j = 0; 1; : : : ; k̂. We will use the following
facts:

1. gT
k̂+1

QT
k̂
= gT

k̂+1
since the v in each of the projections used to formQk̂ is in spanfs0; : : : ; sk̂g

and gk̂+1 is orthogonal to that span.

2. gT
k̂+1

zik̂ = 0 for i = 1; : : : ;mk̂ since each zik̂ is in spanfs0; : : : ; sk̂g and gk̂+1 is orthogonal
to that span.

3. Since we are assuming that (3.16) holds true, for each j = 0; 1; : : : ; k̂ there exist

�0; : : : ; �k̂�1 such that Pk̂yj can be expressed as
Pk̂�1

i=0 �iyi.

4. For i = 0; 1; : : : ; k̂ � 1, gk̂+1 is orthogonal to H0yi because gk̂+1 is orthogonal to
spanfs0; : : : ; sk̂g and H0yi 2 spanfs0; : : : ; sk̂g from (3.15).

Thus,

gT
k̂+1

HT
k̂+1

yj = gT
k̂+1

 

k̂Q

T
k̂
H0Pk̂ +

m
k̂X

i=1

zik̂w
T
ik̂

!
yj

= 
k̂g
T
k̂+1

QT
k̂
H0Pk̂yj +

m
k̂X

i=1

gT
k̂+1

zik̂w
T
ik̂
yj

= 
k̂g
T
k̂+1

H0Pk̂yj

= 
k̂g
T
k̂+1

H0

0
@k̂�1X
i=1

�iyi

1
A

= 
k̂

k̂�1X
i=1

�ig
T
k̂+1

H0yi

= 0:

Thus, (3.14) holds for k = k̂.
Lastly, using (1) and (2) from above,

sk̂+1 = ��k̂+1Hk̂+1gk̂+1

= ��k̂+1
 

k̂P

T
k̂
H0Qk̂gk̂+1 +

m
k̂X

i=1

wik̂z
T
ik̂
gk̂+1

!

= ��k̂+1
k̂P T
k̂
H0gk̂+1:

Since P T
k̂
maps any vector v into spanfv; s0; : : : ; sk̂+1g by construction, there exist �0; : : : ; �k̂+1

such that

sk̂+1 = ��k̂+1
k̂
0
@H0gk̂+1 +

k̂+1X
i=0

�isi

1
A :
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Hence,
H0gk̂+1 2 spanfs0; : : : ; sk̂+1g;

so
spanfH0g0; : : : ;H0gk̂+1g � spanfs0; : : : ; sk̂+1g:

To show equality of the sets, we will show thatH0gk̂+1 is linearly independent of fH0g0; : : : ;H0gk̂g.
(We already know that the vectors H0g0; : : : ;H0gk̂ are linearly independent since they span
the same space as the linearly independent set fs0; : : : ; sk̂g.) Suppose that H0gk̂+1 is not
linearly independent. Then there exist �0; : : : ; �k̂, not all zero, such that

H0gk̂+1 =
k̂X
i=0

�iH0gi:

Recall that gk̂+1 is orthogonal to fs0; : : : ; sk̂g. By our induction hypothesis, this implies that

gk̂+1 is also orthogonal to fH0g0; : : : ;H0gk̂g. Thus for any j between 0 and k̂,

0 = gT
k̂+1

H0gj =

0
@ k̂X
i=0

�iH0gi

1
AT

gj =
k̂X
i=0

�ig
T
i H0gj = �jg

T
j H0gj:

SinceH0 is positive de�nite and gj is nonzero, we conclude that �j must be zero. Since this is
true for every j between zero and k, we have a contradiction. Thus, the set fH0g0; : : : ;H0gk̂+1g
is linearly independent. Hence, (3.15) holds for k = k̂.

()) Assume that (3.13){(3.15) hold for all k such that gk+1 6= 0 but that (3.16) does not
hold; i.e., there exist j and k such that gk+1 6= 0, j is between 0 and k, and

Pkyj 62 spanfy0; : : : ; yk�1g (3.17)

This will lead to a contradiction. By construction of Pk, there exist �0; : : : ; �k such that

Pkyj =
kX
i=0

�iyi: (3.18)

By assumption (3.17), �k must be nonzero. From (3.14), it follows that gTk+1H
T
k+1yj = 0.

Using facts (1), (2), and (4) from before, (3.15) and (3.18), we get

0 = gTk+1H
T
k+1yj = gTk+1

 

kQ

T
kH0Pk +

mkX
i=1

zikw
T
ik

!
yj

= 
kg
T
k+1Q

T
kH0Pkyj +

mkX
i=1

gTk+1zikw
T
ikyj

= 
kg
T
k+1H0Pkyj

= 
kg
T
k+1H0

 
kX
i=0

�iyi

!
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= 
k
kX
i=0

�ig
T
k+1H0yi

= 
k�kg
T
k+1H0yk

= 
k�k
�
gTk+1H0gk+1 � gTk+1H0gk

�
= 
k�kg

T
k+1H0gk+1:

Thus since neither 
k nor �k is zero, we must have

gTk+1H0gk+1 = 0;

but this is a contradiction since H0 is positive de�nite and gk+1 was assumed to be nonzero.
2

When a method produces conjugate search directions, we can say something about ter-
mination.

Corollary 3.1 Suppose that the assumptions of Theorem 3.1 hold. Suppose further that
condition (3.16) holds for all k and that Hjgj 6= 0 whenever gj 6= 0. Then the scheme repro-
duces the iterates from the conjugate gradient method with preconditioner H0 and terminates
in no more than n iterations.

Proof. Let k be such that g0; : : : ; gk are all nonzero and such that Higi 6= 0 for i = 0; : : : ; k.
Since we have a method of the type described in Theorem 3.1 satisfying (3.16), condi-
tions (3.13) { (3.15) hold. We claim that the (k + 1)st subspace of search directions,
spanfs0; : : : ; skg, is equal to the (k + 1)st Krylov subspace, spanfH0g0; : : : ; (H0A)kH0g0g.

From (3.15), we know that spanfs0; : : : ; skg = spanfH0g0; : : : ;H0gkg. We will show
via induction that spanfH0g0; : : : ;H0gkg = spanfH0g0; : : : ; (H0A)kH0g0g. This base case is
trivial, so assume that

spanfH0g0; : : : ;H0gig = spanfH0g0; : : : ; (H0A)
iH0g0g;

for some i < k. Now,

gi+1 = Axi+1 � b = A(xi + si)� b = Asi + gi;

and from (3.15) and the induction hypothesis,

si 2 spanfH0g0; : : : ;H0gig = spanfH0g0; : : : ; (H0A)
iH0g0g;

which implies that

H0Asi 2 spanf(H0A)H0g0; : : : ; (H0A)
i+1H0g0g:

So,
H0gi+1 2 spanfH0g0; : : : ; (H0A)

i+1H0g0g:
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Hence, the search directions span the Krylov subspace. Since the search directions are
conjugate (3.14) and span the Krylov subspace, the iterates are the same as those produced
by conjugate gradients with preconditioner H0.

Since we produce the same iterates as the conjugate gradient method and the conjugate
gradient method is well-known to terminate within n iterations [30, 35, 42], we can conclude
that this scheme terminates in at most n iterations. 2

Note that we require that Hjgj be nonzero whenever gj is nonzero; this requirement is
necessary since not all the methods produce positive de�nite updates and it is possible to
construct an update that maps gj to zero. If this were to happen, we would have a breakdown
in the method.

The next corollary de�nes the role that the latest information (sk and yk) plays in the
formation of the kth H-update.

Corollary 3.2 Suppose we have a method of the type described in Theorem 3.1 satisfying
(3.16). Suppose further that at the kth iteration Pk is composed of p projections of the form in
(3.2). Then at least one of the projections must have u =

Pk
i=0 �iyi with �k 6= 0. Furthermore,

if Pk is a single projection (p = 1), then v must be of the form v = �ksk + �k+1sk+1 with
�k 6= 0.

Proof. Consider the case of p = 1. We have

Pk = I � uvT

vTu
;

where u 2 spanfy0; : : : ; ykg and v 2 spanfs0; : : : ; sk+1g. We will assume that

u =
kX
i=0

�iyi and v =
k+1X
i=0

�isi:

for some scalars �i and �i. By (3.16), there exist �0; : : : ; �k�1 such that

Pkyk =
k�1X
i=0

�iyi:

Then

yk � vTyk
vTu

u =
k�1X
i=0

�iyi;

and so
vTyk
vTu

u = yk �
k�1X
i=0

�iyi: (3.19)

From (3.14), the set fs0; : : : skg is conjugate and thus linearly independent. Since we are
working with a quadratic, yi = Asi for all i; and since A is symmetric positive de�nite, the
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set fy0; : : : ; ykg is also linearly independent. So the coe�cient of the yk on the left-hand side
of (3.19) must match that on the right-hand side, thus

vTyk
vTu

�k = 1:

Hence,
�k 6= 0; (3.20)

and yk must make a nontrivial contribution to Pk.
Next we will show that �0 = �1 = � � � = �k�1 = 0. Assume that j is between 0 and k� 1.

Then

Pkyj = yj � vTyj
vTu

u

= yj �
�Pk+1

i=0 �isi
�T

yj

vTu
u

= yj �
Pk+1

i=0 �is
T
i Asj

vTu
u

= yj �
�js

T
j Asj

vTu
u:

Now sTj Asj is nonzero because A is positive de�nite. If �j is nonzero then the coe�cient of
u is nonzero and so yk must make a nontrivial contribution to Pkyj, implying that Pkyj 62
spanfy0; : : : ; yk�1g. This is a contradiction. Hence, �j = 0.

To show that �k 6= 0, consider Pkyk. Suppose that �k = 0. Then

vTyk = �k+1y
T
k sk+1 + �ky

T
k sk

= �k+1s
T
kAsk+1

= 0;

and so

Pkyk = yk � vTyk
vTu

u = yk:

This contradicts Pkyk 2 spanfy0; : : : ; yk�1g, so �k must be nonzero.
Now we will discuss the p > 1 case. Label the u-components of the p projections as u1

through up. Then

Pkyk = yk +
pX
i=1


iui;

for some scalars 
1 through 
p. Furthermore, each ui can be written as a linear combination
of fy0; y1; : : : ; ykg, so

Pkyk = yk +
pX
i=1

kX
j=0


i�ijyj;
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for some scalars �10 through �pk. Since

Pkyk 2 spanfy0; : : : ; yk�1g;

and
yk 62 spanfy0; : : : ; yk�1g;

we must have

1 +
pX
i=1


i�ik = 0:

Thus �ik must be nonzero for some i, and we can conclude that at least one ui must have a
nontrivial contribution from yk. 2

3.3 Examples of Methods that Reproduce the CG It-

erates

Here are some speci�c examples of methods that �t the general form (3.1), satisfy condi-
tion (3.16) of Theorem 3.1, and thus terminate in at most n iterations. The examples in
Sections 3.3.1 { 3.3.3 are well-known results, but the corollary in Section 3.3.4 is original.

3.3.1 Conjugate Gradients

The conjugate gradient method with preconditioner H0 (see (3.4)) satis�es condition (3.16)
of Theorem 3.1 since

Pkyj =

 
I � yks

T
k

sTk yk

!
yj = 0 for all j = 0; : : : ; k:

3.3.2 L-BFGS

Limited-memory BFGS (see (3.5)) satis�es condition (3.16) of Theorem 3.1 since

Pkyj =

(
0 for j = k �mk + 1; : : : ; k; and
yj for j = 0; : : : ; k �mk:

3.3.3 DFP

DFP (with full memory), see (3.7), satis�es condition (3.16) of Theorem 3.1. Consider Pk
in the full memory case. We have

Pk =
kY
i=0

 
I � yiyiH

T
i

yTi Hiyi

!
:
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For full-memory DFP, Hiyj = sj for j = 0; : : : ; i � 1. Using this fact, one can easily verify
that Pkyj = 0 for j = 0; : : : ; k. Therefore, full-memory DFP satis�es condition (3.16) of
Theorem 3.1. The same reasoning does not apply to the limited-memory case as we shall
show in Section 3.4.2.

3.3.4 Variations on L-BFGS

The next corollary gives some ideas for other methods that are related to L-BFGS and
terminate in at most n iterations on strictly convex quadratics.

Corollary 3.3 The L-BFGS method with an exact line search will terminate in n itera-
tions on an n-dimensional strictly convex quadratic function even if any combination of the
following modi�cations is made to the update:

1. Vary the limited-memory constant, keeping mk � 1.

2. Form the projections used in Vk from the most recent (sk; yk) pair along with any set
of m� 1 other pairs from f(s0; y0); : : : ; (sk�1; yk�1)g .

3. Form the projections used in Vk from the most recent (sk; yk) pair along with any m�1
other linear combinations of pairs from f(s0; y0); : : : ; (sk�1; yk�1)g:

4. Iteratively rescale H0.

Proof. For each variant, we show that the method has an update that can be expressed in
the general form (3.1) and satis�es condition (3.16) of Theorem 3.1 and hence terminates by
Corollary 3.1.

1. Let m > 0 be a value that may change from iteration to iteration, and de�ne

Vik =
kY
j=i

 
I � yjs

T
j

sTj yj

!
:

Choose


k = 1; mk = minfk + 1;mg;
Pk = Qk = Vk�mk+1;k; and

wik = zik =
(Vk�mk+i+1;k)

T (sk�mk+i)q
(sk�mk+i)

T (yk�mk+i)
:

These choices �t the general form (3.1). Furthermore,

Pkyj =

(
0 if j = k �mk; k �mk + 1; : : : ; k; and
yj if j = 0; 1; : : : ; k �mk � 1;

so this variation satis�es condition (3.16) of Theorem 3.1.
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2. This is a special case of the next variant.

3. At iteration k, let (ŝ
(i)
k ; ŷ

(i)
k ) denote the ith (i = 1; : : : ;m � 1) choice of any linear

combination from the span of the set

f(s0; y0); : : : ; (sk�1; yk�1)g;

and let (ŝ(m)k ; ŷ
(m)
k ) = (sk; yk). De�ne

Vik =
mY
j=i

0
@I � (ŷ(i)k )(ŝ(i)k )T

(ŝ
(i)
k )T (ŷ

(i)
k )

1
A :

Choose


k = 1; mk = minfk + 1;mg;
Pk = Qk = V1;k; and

wik = zik =
(Vi+1;k)

T (ŝ
(i)
k )q

(ŝ(i)k )T (ŷ(i)k )
:

These choices satisfy the general form (3.1). Furthermore,

Pkyj =

(
0 if yj = y

(i)
k for some i; and

yj otherwise:

Hence, this variation satis�es condition (3.16) of Theorem 3.1.

4. Let 
k in be the scaling constant, and choose the other vectors and matrices as in
L-BFGS (3.5).

Combinations of variants are left to the reader. 2

Part 3 of the previous corollary shows that the \accumulated step" method of Gill and
Murray [28] terminates on quadratics.

Part 4 of the previous corollary shows that scaling does not a�ect termination in L-BFGS.
In fact, for any method that has an update that can be expressed in the general form (3.1),
it is easy to see that scaling will not a�ect termination on quadratics.

3.4 Examples of Methods that Do Not Reproduce the

CG Iterates

We will discuss several methods that �t the general form (3.1) but do not satisfy the condi-
tions of Theorem 3.1.
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3.4.1 Steepest Descent

Steepest descent, see (3.3), does not satisfy condition (3.16) of Theorem 3.1 and thus does
not produce conjugate search directions. This fact is well-known; see, e.g., Luenberger [42].

3.4.2 Limited-Memory DFP

Limited-memory DFP, see (3.7), with m < n does not satisfy the condition on Pk (3.16) for
all k, and so the method will not produce conjugate directions. This fact was previously
unknown.

For example, suppose that we have a convex quadratic with

A =

2
64 1 0 0
0 2 0
0 0 4

3
75 ; and b =

2
64 1
1
1

3
75 :

Using a limited-memory constant of m = 1 and exact arithmetic, it can be seen that the
iteration does not terminate within the �rst 20 iterations of limited-memory DFP with
H0 = I. The MAPLE notebook �le used to compute this example is available on the World
Wide Web [37].

Using the above example, we can easily see that no limited-memory Broyden Family
method except limited-memory BFGS terminates within the �rst n iterations.
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Chapter 4

Quadratic Termination of Update-Skipping

Broyden Family Methods

The previous chapter discussed limited-memorymethods that behave like conjugate gradients
on n-dimensional strictly convex quadratic functions. In this chapter, we are concerned with
methods that skip some updates. The average computation cost per iteration is reduced, and
it can save memory if the quasi-Newton matrix is stored implicitly. We establish conditions
under which �nite termination is preserved but delayed for the Broyden Family.

4.1 Termination when Updates are Skipped

It was shown by Powell [54] that if we skip every other update and take direct prediction steps
(i.e. steps of length one) in a Broyden Family method, then the procedure will terminate in
no more than 2n + 1 iterations on an n-dimensional strictly convex quadratic function. An
alternate proof of this result is given by Nazareth [46].

We will prove a related result. Suppose that we are using a perfect Broyden Family
method on a strictly convex quadratic function and decide to \skip" p updates to H (i.e.
choose Hk+1 = Hk on p occasions). Then, the algorithm terminates in no more than n + p
iterations. In contrast to Powell's result, it does not matter which updates are skipped or if
multiple updates are skipped in a row.

Theorem 4.1 Suppose that a Broyden Family method using exact line searches is applied
to an n-dimensional strictly convex quadratic function

f(x) =
1

2
xTAx� bTx;

and p updates are skipped. Let

J(k) = fj � k : the update at iteration j is not skippedg:
Then for all k = 0; 1; : : :

gTk+1sj = 0; for all j 2 J(k); and (4.1)

sTk+1Asj = 0; for all j 2 J(k): (4.2)
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Furthermore, the method terminates in at most n + p iterations at the exact minimizer.

Proof. We will use induction on k to show (4.1) and

Hk+1yj = sj ; for all j 2 J(k): (4.3)

Then (4.2) follows easily since for all j 2 J(k),

sTk+1Asj = ��k+1gTk+1Hk+1yj

= ��k+1gTk+1sj
= 0:

Let k0 be the least value of k such that J(k) is nonempty; i.e., J(k0) = fk0g. Then gk0+1
is orthogonal to sk0 since line searches are exact, and Hk0+1yk0 = sk0 since all members of
the Broyden Family satisfy the secant condition. Hence, the base case is true. Now assume
that (4.1) and (4.3) hold for all values of k = 0; 1; : : : ; k̂ � 1. We will show that they also
hold for k = k̂.

Case I. Suppose that k̂ 62 J(k̂). Then Hk̂+1 = Hk̂ and J(k̂ � 1) = J(k̂), so for any

j 2 J(k̂),

gT
k̂+1

sj = (gk̂ +Ask̂)
T sj (4.4)

= gT
k̂
sj + sT

k̂
Asj

= 0;

and
Hk̂+1yj = Hk̂yj = sj:

Case II. Suppose that k̂ 2 J(k̂). Then Hk̂+1 satis�es the secant condition and J(k̂) =

J(k̂ � 1) [ fk̂g. Now gk̂+1 is orthogonal to sk since the line searches are exact, and it is
orthogonal to the older sj by the argument in (4.4). The secant condition guarantees that

Hk̂+1yk̂ = sk̂, and for j 2 J(k̂) but j 6= k̂ we have

Hk̂+1yj = Hk̂yj +
sk̂s

T
k̂

sT
k̂
yk̂
yj �

Hk̂yk̂y
T
k̂
Hk̂

yT
k̂
Hk̂yk̂

yj

+ � (yT
k̂
Hk̂yk̂)

 
sk̂
sT
k̂
yk̂
� Hk̂yk̂
yT
k̂
Hk̂yk̂

! 
sk̂
sT
k̂
yk̂
� Hk̂yk̂
yT
k̂
Hk̂yk̂

!T
yj

= sj +
sT
k̂
Asj

sT
k̂
yk̂

sk̂ �
Hk̂yk̂y

T
k̂
sj

yT
k̂
Hk̂yk̂

+ � (yT
k̂
Hk̂yk̂)

 
sk̂
sT
k̂
yk̂
� Hk̂yk̂
yT
k̂
Hk̂yk̂

! 
sT
k̂
Asj

sT
k̂
yk̂
� yT

k̂
sj

yT
k̂
Hk̂yk̂

!
= sj:
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In either case, the induction result follows.
Suppose that we skip p updates. Then the set J(n+ p � 1) has cardinality n. Without

loss of generality, assume that the set fsigi2J(n+p�1) has no zero elements. From (4.2), the
vectors are linearly independent. By (4.1),

gTn+psj = 0; for all j 2 J(n� 1 + p);

and so gn+p must be zero. This implies that xn+p is the exact minimizer of f . 2

4.2 Loss of Termination for Update Skipping with Limited-

Memory

Unfortunately, updates that use both limited-memory and repeated update-skipping do not
produce conjugate search directions for n-dimensional strictly convex quadratics, and the
termination property is lost. We will show a simple example, limited-memory BFGS with
m = 1, skipping every other update. Note that according to Corollary 3.2, we would still be
guaranteed termination if we used the most recent information in each update.

Example. Suppose that we have a convex quadratic with

A =

2
64 1 0 0
0 2 0
0 0 4

3
75 ; and b =

2
64 1
1
1

3
75 :

We apply limited-memory BFGS with limited-memory constant m = 1 and H0 = I and skip
the update to H on even iterations. Using exact arithmetic in MAPLE, we observe that the
process does not terminate even after 100 iterations [37].
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Chapter 5

Experimental Results

The results of Chapters 3 and 4 lead to a number of ideas for new methods for unconstrained
optimization. In this chapter, we motivate, develop, and test these ideas. We describe the
collection of test problems in Section 5.2. The test environment is described in Section 5.3.
Section 5.4.1 outlines the implementation of the L-BFGS method (our base for all com-
parisons) and Sections 5.4.2{5.4.7 describe the variations. Pseudo-code for L-BFGS and its
variations is given in Appendix B. Complete numerical results, many graphs of the numerical
results, and the original FORTRAN code are available [37].

5.1 Motivation

So far we have only given results for convex quadratic functions. While termination on
quadratics is beautiful in theory, it does not necessarily yield insight into how these methods
will do in practice.

We will not present any new results relating to convergence of these algorithms on general
functions; however, many of these can be shown to converge using the convergence analysis
presented in Section 7 of [41]. In [41], Liu and Nocedal show that a limited-memory BFGS
method implemented with a line search that satis�es the strong Wolfe conditions (see Sec-
tion 2.1 for a de�nition) is R-linearly convergent on a convex function that satis�es a few
modest conditions.

5.2 Test Problems

For our test problems, we used the Constrained and Unconstrained Testing Environment
(CUTE) by Bongartz, Conn, Gould and Toint. The package is documented in [7] and can be
obtained via the World Wide Web [6] or via ftp [5]. The package contains a large collection
of test problems as well as the interfaces necessary for using the problems. We chose a
collection of 22 unconstrained problems. The problems ranged in size from 10 to 10,000
variables, but each took L-BFGS with limited-memory constant m = 5 at least 60 iterations
to solve. Table 5.1 enumerates the problems, giving the SIF �le name, the dimension (n),
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No. SIF Name Size Description & Reference

1 EXTROSNB 10 Extended Rosenbrock function (nonseparable ver-
sion) [64, Problem 10].

2 WATSONS 31 Watson problem [43, Problem 20].
3 TOINTGOR 50 Toint's operations research problem [63].
4 TOINTPSP 50 Toint's PSP operations research problem [63].
5 CHNROSNB 50 Chained Rosenbrock function [63].
6 ERRINROS 50 Nonlinear problem similar to CHNROSNB [62].
7 FLETCHBV 100 Fletcher's boundary value problem [24, Prob-

lem 1].
8 FLETCHCR 100 Fletcher's chained Rosenbrock function [24, Prob-

lem 2].
9 PENALTY2 100 Second penalty problem [43, Problem 24].
10 GENROSE 500 Generalized Rosenbrock function [44, Problem 5].
11 BDQRTIC 1000 Quartic with a banded Hessian with bandwidth=9

[14, Problem 61].
12 BROYDN7D 1000 Seven diagonal variant of the Broyden tridiagonal

system with a band away from diagonal [63].
13 PENALTY1 1000 First penalty problem [43, Problem 23].
14 POWER 1000 Power problem by Oren [52].
15 MSQRTALS 1024 The dense matrix square root problem by Nocedal

and Liu (case 0)[9, Problem 204].
16 MSQRTBLS 1025 The dense matrix square root problem by Nocedal

and Liu (case 1)[9, Problem 201].
17 CRAGGLVY 5000 Extended Cragg & Levy problem [64, Prob-

lem 32].
18 NONDQUAR 10000 Nondiagonal quartic test problem [14, Prob-

lem 57].
19 POWELLSG 10000 Extended Powell singular function [43, Prob-

lem 13].
20 SINQUAD 10000 Another function with nontrivial groups and rep-

etitious elements [31].
21 SPMSRTLS 10000 Liu and Nocedal tridiagonal matrix square root

problem [9, Problem 151].
22 TRIDIA 10000 Shanno's TRIDIA quadratic tridiagonal problem

[64, Problem 8].

Table 5.1: Optimization test problem collection. Each problems was chosen from the CUTE
package.
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and a description for each problem. The CUTE package also provides a starting point (x0)
for each problem.

5.3 Test Environment

We used FORTRAN77 code on an SGI Indigo2 to run the algorithms, with FORTRAN
BLAS routines from NETLIB. We used the compiler's default optimization level.

Figure 2.1 outlines the general quasi-Newton implementation that we followed. For the
line search, we use the routines cvsrch and cstep written by Jorge J. Mor�e and David
Thuente from a 1983 version of MINPACK. The line search �nds an � that meets the strong
Wolfe conditions (2.2) and (2.4). We used !1 = 1:0 � 10�4 and !2 = 0:9. Except for the
�rst iteration, we always attempt a step length of 1.0 �rst and only use an alternate value if
1.0 does not satisfy the Wolfe conditions. In the �rst iteration, we initially try a step length
equal to kg0k�1. The remaining line search parameters are detailed in Appendix A.

We generate the matrixHk by either the limited-memory update or one of the variations
described in Section 5.4, storing the matrix implicitly in order to save both memory and
computation time.

We terminate the iterations if any of the following conditions are met at iteration k:

1. The inequality
kgkk < 1:0� 10�5 �maxf1; kxkkg;

is satis�ed,

2. the line search fails due to rounding errors, or

3. the number of iterations exceeds 3000.

We say that the iterates have converged if the �rst condition is satis�ed. Otherwise, the
method has failed.

5.4 L-BFGS and Its Variations

We tried a number of variations to the standard L-BFGS algorithm. L-BFGS and these
variations are described in this section and summarized in Tables 5.2{5.3.

5.4.1 L-BFGS: Algorithm 0

The limited-memory BFGS update is given in (2.7) and described fully by Nocedal [47].
Our implementation and the following description come essentially from Byrd, Nocedal and
Schnabel [12].

Let H0 be symmetric and positive de�nite and assume that the mk pairs

fsi; yigk�1i=k�mk
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No. Reference Brief Description

0 x 5.4.1 L-BFGS with no options.
1 x 5.4.2, Variation 1 Allow m to vary iteratively basing the

choice of m of kgk and not allowing m to
decrease.

2 x 5.4.2, Variation 2 Allow m to vary iteratively basing the
choice of m of kgk and allowing m to
decrease.

3 x 5.4.2, Variation 3 Allow m to vary iteratively basing the
choice of m of kg=xk and not allowing m
to decrease.

4 x 5.4.2, Variation 4 Allow m to vary iteratively basing the
choice of m of kg=xk and allowing m to
decrease.

5 x 5.4.3 Dispose of old information if the step
length is greater than one.

6 x 5.4.4, Variation 1 Back-up if the current iteration is odd.
7 x 5.4.4, Variation 2 Back-up if the current iteration is even.
8 x 5.4.4, Variation 3 Back-up if a step length of 1.0 was used in

the last iteration.
9 x 5.4.4, Variation 4 Back-up if kgkk > kgk�1k.
10 x 5.4.4, Variation 3* Back-up if a step length of 1.0 was used in

the last iteration and we did not back-up
on the last iteration.

11 x 5.4.4, Variation 4* Back-up if kgkk > kgk�1k and we did not
back-up on the last iteration.

Table 5.2: Description of Numerical Optimization Algorithms (Part I)
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No. Reference Brief Description

12 x 5.4.5, Variation 1 Merge if neither of the two vectors to be
merged is itself the result of a merge and
the 2nd and 3rd most recent steps taken
were of length 1.0.

13 x 5.4.5, Variation 2 Merge if we did not do a merge the last
iteration and there are at least two old s
vectors to merge.

14 x 5.4.6, Variation 1 Skip update on odd iterations.
15 x 5.4.6, Variation 2 Skip update on even iterations.
16 x 5.4.6, Variation 3 Skip update if kgk+1k > kgkk.
17 Alg. 5 & Alg. 8 Dispose of old information and back-up

on the next iteration if the step length is
greater than one.

18 Alg. 13 & Alg. 1 Merge if we did not do a merge the last
iteration and there are at least two old s
vectors to merge, and allow m to vary iter-
atively basing the choice of m of kgk and
not allowing m to decrease.

19 Alg. 13 & Alg. 3 Merge if we did not do a merge the last
iteration and there are at least two old s
vectors to merge, and allow m to vary it-
eratively basing the choice of m of kg=xk
and not allowing m to decrease.

20 Alg. 13 & Alg. 2 Merge if we did not do a merge the last
iteration and there are at least two old s
vectors to merge, and allow m to vary iter-
atively basing the choice of m of kgk and
allowing m to decrease.

21 Alg. 13 & Alg. 4 Merge if we did not do a merge the last
iteration and there are at least two old s
vectors to merge, and allow m to vary it-
eratively basing the choice of m of kg=xk
and allowing m to decrease.

Table 5.3: Description of Numerical Optimization Algorithms (Part II)
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each satisfy sTi yi > 0.
We will let

Sk = [sk�mk
sk�mk+1 � � � sk�1] and Yk = [yk�mk

yk�mk+1 � � � yk�1];

where mk = minfk+1;mg, and m is some positive integer. We will assume that H0 = I and
that H0 is iteratively rescaled by a constant 
k as is commonly done in practice. Then, the
matrixHk obtained by k applications of the limited-memory BFGS update can be expressed
as

Hk = 
kI +
�
Sk 
kYk

� U�T
k (Dk + 
kY

T
k Yk)U

�1
k �U�T

k

�U�1
k 0

! 
ST
k


kY
T
k

!
;

where Uk and Dk are the mk �mk matrices given by

(Uk)ij =

(
sk�mk�1+i

Tyk�mk�1+j if i � j;
0 otherwise;

and
Dk = diagfsTk�mk

yk�mk
; : : : ; sTk�1yk�1g:

We will describe how to compute dk = �Hkgk in the case that k > 0. Let xk be the current
iterate. Letmk = minfk+1;mg. Given sk�1; yk�1; gk, the matricesSk�1; Yk�1; Uk�1; Y

T
k�1Yk�1;Dk�1,

and the vectors ST
k�1gk�1; Y

T
k�1gk�1:

1. Update the n �mk�1 matrices Sk�1 and Yk�1 to get the n �mk matrices Sk and Yk
using sk�1 and yk�1

2. Compute the mk-vectors ST
k gk and Y T

k gk.

3. Compute the mk-vectors ST
k yk�1 and Y T

k yk�1 by using the fact that

yk�1 = gk � gk�1:

We already know mk�1 components of Skgk�1 from Sk�1gk�1, and likewise for Ykgk�1.
We need only compute sTk�1gk�1 and yTk�1gk�1 and do the subtractions.

4. Compute U�1
k . Rather than recomputing U�1

k , we update the matrix from the previous
iteration by deleting the leftmost column and topmost row ifmk = mk�1 and appending
a new column on the right and a new row on the bottom. Let �k�1 = 1=sTk�1yk�1 and
let (U�1

k�1)
0 be the (mk � 1)� (mk � 1) lower right submatrix of U�1

k�1 and let (ST
k yk�1)

0

be the upper mk � 1 elements of ST
k yk�1. Then

U�1
k =

 
(U�1

k�1)
0 ��k�1(U�1

k�1)
0(ST

k yk�1)
0

0 �k�1

!
:

Note that sTk�1yk�1 = (ST
k yk�1)mk

and so is already computed.
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5. Assemble Y T
k Yk. We have already computed all the components.

6. Update Dk using Dk�1 and sTk�1yk�1 = (ST
k yk�1)mk

.

7. Compute

k = yTk�1sk�1=y

T
k�1yk�1:

Note that both yTk�1sk�1 and yTk�1yk�1 have already been computed.

8. Compute two intermediate values

p1 = U�1
k ST

k gk;

p2 = U�1
k (
kY

T
k Ykp1 +Dkp1 � 
kY

T
k gk):

9. Compute
dk = 
kYkp1 � Skp2 � 
kgk:

The storage costs for this are very low. In order to reconstruct Hk, we need to store
Sk; Yk; U

�1
k ; Y T

k Yk, Dk (a diagonal matrix) and a few m-vectors. This requires only 2mn +
2m2 + O(m) storage. Assuming m << n, this is much less storage than the n2 storage
required for a typical implementation of BFGS.

Step Operation Count
2 4mn� 2m
3 4n+ 2m� 2
4 2m2 � 4m+ 3
7 1
8 8m2 + 2m
9 4m2 + 2m

Table 5.4: Operations count for computation of Hkgk. Steps with no operations are not
shown.

The computation of Hg takes at most O(mn) operations assuming n >> m. (See
Table 5.4.) This is much less than the O(n2) time normally needed to compute Hg when
the whole matrix H is stored.

We are using L-BFGS as our basis for comparison. For information on the performance
of L-BFGS see Liu and Nocedal [41] and Nash and Nocedal [45].
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Alg. No. m = 5 m = 10 m = 15 m = 50

0 1 0 0 1
1 0 0 0 0
2 1 0 0 0
3 2 0 0 1
4 1 0 0 1
5 0 0 0 0
6 1 0 0 1
7 0 0 0 1
8 0 0 0 0
9 0 0 0 0
10 0 0 0 0
11 0 0 0 0
12 1 0 0 1
13 1 0 0 1
14 12 12 12 12
15 5 5 5 5
16 11 11 9 10
17 0 0 0 0
18 1 1 0 0
19 1 0 0 1
20 1 1 1 1
21 3 1 0 1

Table 5.5: The number of failures of the algorithms on the 22 test problems. An algorithm is
said to have \failed" on a particular problem if a line search fails or the maximum allowable
number of iterations (3000 in our case) is exceeded.

5.4.2 Varying m Iteratively: Algorithms 1{4

In typical implementations of L-BFGS,m is �xed throughout the iterations: once m updates
have accumulated, m updates are always used. We considered the possibility of varying m
iteratively, preserving �nite termination on convex quadratics. Using an argument similar to
that presented in [41], we can also prove that this algorithm has a linear rate of convergence
on a convex function that satis�es a few modest conditions.

We tried four di�erent variations on this theme. All were based on a linear formula that
scales m in relation to the size of kgk. The motivation is that we will need a stronger model
using more information as kgk gets smaller and we are closer to the minimizer; far away we
require less information. Let mk be the number of iterates saved at the kth iteration, with
m0 = 1. Here, think of m as the maximum allowable value of mk. Let the convergence test
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Alg. No. m = 5 m = 10 m = 15 m = 50

1 8/22 10/22 17/22 17/22
2 7/22 13/22 13/22 19/22
3 14/21 14/22 12/22 15/21
4 12/21 17/22 15/22 16/21
5 19/22 20/22 20/22 21/22
6 21/21 22/22 22/22 21/21
7 8/22 12/22 10/22 10/22
8 12/22 14/22 12/22 15/22
9 6/22 13/22 12/22 16/22
10 12/22 14/22 12/22 15/22
11 10/22 10/22 11/22 14/22
12 21/21 22/22 22/22 21/21
13 3/22 4/22 4/22 4/22
14 1/21 1/22 1/22 1/21
15 1/22 1/22 1/22 0/22
16 0/22 1/22 1/22 0/22
17 12/22 13/22 12/22 14/22
18 3/22 4/22 5/22 4/22
19 2/22 3/22 4/22 4/22
20 2/22 4/22 4/22 5/22
21 1/22 2/22 4/22 4/22

Table 5.6: Function Evaluations Comparison. The �rst number in each entry is the number
of times the algorithm did as well as or better than normal L-BFGS in terms of function
evaluations. The second number is the total number of problems solved by at least one of
the two methods (the algorithm and/or L-BFGS).

be given by kgkk=maxf1; kxkkg < �. Then the formula for mk at iteration k is

mk = min

(
mk�1 + 1;

$
(m� 1)

log �k � log �0
log 100�� log �0

%
+ 1

)
:

We can specify �k to be kgkk without any regard to normalization, or we can normalize the
gradient with respect to kxkk. (If kxkk < 1, we normalize by 1.) The choice may depend on
the sensitivity of the gradient to scale. We begin with m1 = 1 and then compute mk each
time based on the formula above. We may, however, want to restrict mk so it cannot go
below the previous value, mk�1. The four variations are

1. �k = kgkk and require mk � mk�1,

2. �k = kgkk,
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Alg. No. m = 5 m = 10 m = 15 m = 50

1 15/22 18/22 20/22 18/22
2 16/22 19/22 18/22 18/22
3 16/21 14/22 15/22 15/21
4 17/21 18/22 20/22 18/21
5 15/22 13/22 14/22 15/22
6 16/21 19/22 15/22 15/21
7 11/22 11/22 10/22 7/22
8 11/22 7/22 6/22 5/22
9 9/22 10/22 7/22 8/22
10 11/22 8/22 5/22 5/22
11 9/22 8/22 9/22 5/22
12 11/21 12/22 8/22 11/21
13 5/22 10/22 13/22 17/22
14 1/21 1/22 1/22 2/21
15 5/22 6/22 9/22 9/22
16 0/22 2/22 3/22 2/22
17 11/22 8/22 5/22 4/22
18 8/22 14/22 19/22 20/22
19 11/22 11/22 17/22 19/22
20 10/22 14/22 17/22 19/22
21 9/22 16/22 16/22 18/22

Table 5.7: Time Comparison. The �rst number in each entry is the number of times the
algorithm did as well as or better than normal L-BFGS in terms of time. The second number
is the total number of problems solved by at least one of the two methods (the algorithm
and/or L-BFGS).

3. �k = kgkk=maxf1; kxkkg and require mk � mk�1, and

4. �k = kgkk=maxf1; kxkkg.
We used four values of m: 5, 10, 15 and 50, for each algorithm. The results are summa-

rized in Tables 5.5 { 5.9. More extensive results can be obtained [37].
Table 5.5 shows that these algorithms had roughly the same number of failures as L-

BFGS.
Table 5.6 compares each algorithm to L-BFGS in terms of function evaluations. For

each algorithm and each value of m, the number of times that the algorithm used as few or
fewer function evaluations than L-BFGS is listed relative to the total number of admissible
problems. Problems are admissible if at least one of the two methods solved it. We observe
that in all but three cases, the algorithm used as few or fewer function evaluations than
L-BFGS for over half the test problems.
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Alg. No. m = 5 m = 10 m = 15 m = 50

1 1.054 1.017 0.931 1.008
2 1.099 0.976 0.968 0.945
3 1.006 0.957 1.391 1.014
4 0.998 1.297 0.970 1.000
5 1.021 0.971 1.005 1.010
6 1.000 1.000 1.000 1.000
7 1.099 0.996 1.205 1.020
8 0.991 1.677 1.507 0.891
9 1.035 1.371 1.005 0.947
10 0.991 1.677 1.507 0.891
11 1.044 0.992 0.981 0.916
12 1.000 1.000 1.000 1.000
13 1.137 1.178 1.244 1.373
14 8.227 8.666 9.073 9.308
15 3.185 4.754 5.317 6.032
16 9.687 5.926 6.032 7.054
17 0.981 1.023 0.924 0.918
18 1.201 1.529 1.209 1.365
19 1.212 1.959 1.242 1.387
20 1.263 1.101 1.226 1.375
21 1.406 1.161 1.178 1.394

Table 5.8: Mean function evaluations ratios for each algorithm compared to L-BFGS. Prob-
lems for which either method failed are not used in this mean.

Table 5.7 compares each algorithm to L-BFGS in terms of time. The entries are similar
to those in Table 5.6. Observe that Algorithms 1-4 did very well in terms of time, doing as
well or better than L-BFGS in nearly every case.

For each problem in each algorithm, we computed the ratio of the number of function
evaluations for the algorithm to the number of function evaluations for L-BFGS. Table 5.8
lists the means of these ratios. A mean below 1.0 implies that the algorithm does better
than L-BFGS on average. The average is better for the �rst four algorithms in 6 out of 16
cases. Observe, however, that all the means are close to one.

We experience savings in terms of time for the �rst four algorithms. These algorithms
will tend to save fewer vectors than L-BFGS since mk is typically less than m; and so less
work is done computing Hkgk in these algorithms. Table 5.9 gives the mean of the ratios
of time to solve for each value of m in each algorithm. Note that most of the ratios are far
below one in this case.

These variations did particularly well on problem 7. See [37] for more information.
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Alg. No. m = 5 m = 10 m = 15 m = 50

1 0.972 0.894 0.784 0.884
2 0.993 0.831 0.780 0.783
3 0.955 0.870 1.071 0.898
4 0.907 1.119 0.823 0.856
5 1.041 0.969 0.993 1.004
6 1.007 0.983 0.977 0.995
7 1.088 1.010 1.179 1.692
8 1.057 1.421 1.426 1.425
9 1.032 1.220 1.043 1.173
10 1.056 1.405 1.440 1.412
11 1.062 1.050 1.062 1.208
12 1.008 1.011 1.013 1.002
13 1.083 1.082 0.983 0.960
14 5.008 4.046 3.527 2.646
15 2.079 2.507 2.579 2.735
16 9.272 5.736 5.129 6.407
17 1.053 1.166 1.089 1.399
18 1.081 1.229 0.860 0.885
19 1.130 1.423 0.915 0.923
20 1.114 0.867 0.837 0.916
21 1.258 0.927 0.859 0.974

Table 5.9: Mean time ratios for each algorithm compared to L-BFGS. Problems for which
either method failed are not used in this mean.

5.4.3 Disposing of Old Information: Algorithm 5

We may decide that we are storing too much old information and that we should stop
using it. For example, we may choose to throw away everything except for the most recent
information whenever we take a big step, since the old information may not be relevant to
the new neighborhood. We use the following test: If the last step length was bigger than 1,
dispose of the old information.

The algorithm performed nearly the same as L-BFGS. There was substantial deviation
on only one or two problems for each value of m, and this seemed evenly divided in terms
of better and worse. From Table 5.5, we see that this algorithm successfully converged on
every problem. Table 5.6 shows that it almost always did as well or better than L-BFGS in
terms of function evaluations. However, Table 5.8 shows that the di�erences were minor. In
terms of time, we observe that the algorithm generally was faster than L-BFGS (Table 5.7),
but again, considering the mean ratios of time (Table 5.9), the di�erences were minor. The
method also does particularly well on problem 7 [37].
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5.4.4 Backing Up in the Update to H: Algorithms 6-11

As discussed in Section 3.3, if we always use the most recent s and y in the update, we
preserve quadratic termination regardless of which older values of s and y we use.

Using this idea, we created some algorithms. Under certain conditions, we discard the
next most recent values of s and y in the H although we still use the most recent s and y
vectors and any other vectors that have been saved from previous iterations. We call this
\backing up" because it is as if we back-up over the next most recent values of s and y.
These algorithms used the following four tests to trigger backing up:

1. The current iteration is odd.

2. The current iteration is even.

3. A step length of 1.0 was used in the last iteration.

4. kgkk > kgk�1k.
In two additional algorithms, we varied situations 3 and 4 by not allowing a back-up if a
back-up was performed on the previous iteration.

The backing up strategy seemed robust in terms of failures. In 4 out of the 6 variations
we did for this algorithm, there were no failures at all. See Table 5.5 for more information.

It is interesting to observe that backing up on odd iterations (Algorithm 6) and backing up
on even iterations (Algorithm 7) caused very di�erent results. Backing up on odd iterations
seemed to have almost no e�ect on the number of function evaluations (Table 5.8) and little
e�ect on the time (Table 5.9). However, backing up on even iterations causes much di�erent
behavior from L-BFGS. It does worse than L-BFGS on most problems, but better on a few.

Algorithms 8 and 10 were two variations of the same idea: backing up if the previous step
length was one. This wipes out the data from the previous iteration after it has been used in
one update. Both show improvement over L-BFGS in terms of function evaluations; in fact,
these two algorithms have the best function evaluation ratio for the m = 50 case (Table 5.8).
Unfortunately, these algorithms did not compete with L-BFGS in terms of time (Table 5.9).
There is little di�erence between Algorithms 8 and 10 | probably because there were rarely
two steps of length one is a row.

Algorithms 9 and 11 are also two variations of the same idea: back-up on iteration k +1
if the norm of gk is bigger than the norm of gk+1. There is a larger di�erence between the
results of 9 and 11 than there was between 8 and 10. In terms of function evaluation ratios
(Table 5.8), Algorithm 11 did better, indicating that it may not be wise to back-up twice in
a row. Both of these did poorly in terms of time as compared with L-BFGS (Table 5.9).

5.4.5 Merging s and y Information in the Update:

Algorithms 12 and 13

Yet another idea is to \merge" s data so that it takes up less storage and computation time.
By merging, we mean forming some linear combination of various s vectors. The y vectors
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would be merged correspondingly. Corollary 3.3 shows that as long as the most recent s and
y are used without merge, old s vectors may be replaced by any linear combination of the
old s vectors in L-BFGS.

We used this idea in the following way: if certain criteria were met, we replaced the
second and third newest s vectors in the collection by their sum, and did similarly for the y
vectors. We used various tests to determine when we would do a merge:

1. Neither of the two vectors to be merged is itself the result of a merge and the second
and third most recent steps taken were of length 1.0.

2. We did not do a merge the last iteration and there are at least two old s vectors to
merge.

The �rst variation (Algorithm 12) performs almost identically to L-BFGS, especially in
terms of time (Table 5.6). Occasionally it did worse in terms of time (Table 5.7). These
observations are also re
ected in the other results in Table 5.8 and Table 5.9. It is likely
that very few vectors were merged.

The second variation (Algorithm 13) makes gains in terms of time, especially for the
larger values of m (Table 5.7 and Table 5.9). Unfortunately, this re
ects only a saving in the
amount of linear algebra required. The number of function evaluations generally is larger
for this algorithm than L-BFGS (Table 5.6 and Table 5.8).

5.4.6 Skipping Updates to H: Algorithms 14{16

If every other update to H is skipped and a step length of one is always chosen, BFGS will
terminate in 2n + 1 iterations on a strictly convex quadratic function. Similarily, if every
other update to H is skipped and an exact line search is used, BFGS will terminate in 2n
iterations on a strictly convex quadratic function. (See Chapter 4.) Unfortunately, neither
property holds in the limited-memory case. We will, however, try some algorithms motivated
by this idea.

The idea is that, every so often, we do not use the current s and y to update H, and
instead just use the old H. There are three variations on this theme.

1. Skip update on odd iterations.

2. Skip update on even iterations.

3. Skip update if kgk+1k > kgkk.
As with the algorithms that did back-ups, the results of the skipping on odd or even

iterations were quite di�erent. Skipping on odd updates (Algorithm 14) did extremely well
for every value of m only on problem 1. Otherwise, it did very badly. Skipping on even
updates (Algorithm 15) performed somewhat better. It did extremely well on problem 7
but not on problems 1 and 12. It also did better than L-BFGS in terms of time on more
occasions than Algorithm 14 (Table 5.7). Neither did well in terms of function evaluations,

41



but the mean ratios for function evaluations (Table 5.8) and time (Table 5.9) were usually
far greater than one.

Skipping the update if the norm of g increased (Algorithm 16) did not do well at all.
It only did better in terms of function evaluations for one problem for two values of m
(Table 5.6) and rarely did better in terms of time (Table 5.7). Its ratios were very bad for
function evaluations (Table 5.8) and time (Table 5.9)

5.4.7 Combined Methods: Algorithms 17-21

We did some experimentation with combinations of methods described in the previous sec-
tions.

In Algorithm 17, we combined Algorithms 5 and 8: we dispose of old information and
back-up on the next iterations if the step length is greater than one. Essentially we are
assuming that we have stepped out of the region being modeled by the quasi-Newton matrix
if we take a long step and we should thus rid the quasi-Newton matrix of that information.
This algorithm did well in terms of function evaluations, having mean ratios of less than one
for three values of m (Table 5.8), but it did not do as well in terms of time.

In Algorithms 19-21, we combined merging and varying m. These algorithms did well in
terms of time for larger m (Table 5.9) but not in terms of function evaluations (Table 5.8).
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Chapter 6

A Semi-Discrete Matrix Decomposition

The semi-discrete decomposition (SDD) was �rst proposed for image compression by O'Leary
and Peleg [51]. In this chapter we will review the decomposition and the algorithm for
generating it. Furthermore, we will present some new convergence results and also give some
idea of how this decomposition relates to the singular value decomposition. In Chapter 7,
we will describe information retrieval, and in Chapter 8 we will show how the SDD can be
used in information retrieval.

6.1 Introduction

The O'Leary-Peleg idea [51] is to �nd a matrix approximation of the form

Ak =
h
x1 x2 � � � xk

i
2
66664
d1 0 � � � 0
0 d2 � � � 0
...

...
. . .

...
0 0 � � � dk

3
77775

2
66664
yT1
yT2
...
yTk

3
77775 =

kX
i=1

dixiy
T
i ;

| {z }
Xk

| {z }
Dk

| {z }
Y T
k

to an m� n matrix A. Here each xi is an m-vector with entries from the set S = f�1; 0; 1g,
each yi is an n-vector with entries from the set S, and each di is a positive scalar. We call
this the semi-discrete decomposition (SDD) of rank k.1

The SDD approximation is formed iteratively. The remainder of this section comes from
[51] but is presented here in a slightly di�erent form. Let A0 = 0, and let Rk be the residual
matrix at the kth step, that is, Rk = A � Ak�1. We wish to �nd a triplet (dk; xk; yk) that
solves

min
x2Sm
y2Sn

d>0

Fk(d; x; y) � kRk � dxyTk2F : (6.1)

1This matrix may not be rank-k algebraically, but it is formed as the sum of k rank-1 matrices.
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This is a mixed integer programming problem.
We can formulate this as an integer programming problem by eliminating d. We have

F (d; x; y) =
mX
i=1

nX
j=1

(rij � dxiyj)
2

=
mX
i=1

nX
j=1

r2ij � 2dxirijyj + d2x2i y
2
j

= kRk2F � 2dxTRy + d2kxk22kyk22;

where for convenience, we have dropped the subscript k. At the optimal solution,

@F=@d = �2xTRy + 2dkxk22kyk22 = 0;

so the optimal value of d is given by

d� =
xTRy

kxk22kyk22
:

Plugging d� into F , we get

F (d�; x; y) = kRk2F � 2

 
xTRy

kxk22kyk22

!
xTRy +

 
xTRy

kxk22kyk22

!2
kxk22kyk22

= kRk2F �
(xTRy)2

kxk22kyk22
: (6.2)

Thus (6.1) is equivalent to

max
x2Sm

y2Sn

~F (x; y) � (xTRy)2

kxk22kyk22
; (6.3)

which is an integer programming problem with 3(m+n) feasible points.
For small values of both m and n, we can compute the value of ~F at each feasible point

to determine the minimizer. However, as the size of m and/or n grows, the cost of this
approach grows exponentially. We know of no better algorithm for solving this problem
exactly, so we do not. Instead we use an alternating algorithm to generate an approximate
solution. We begin by �xing y and solving (6.3) for x, we then �x that x and solve (6.3) for
y, we then �x that y and solve (6.3) for x, and so on.

Solving (6.3) is very easy when either x or y is �xed. Suppose that y is �xed. Then we
must solve

max
x2Sm

(xTs)2

kxk22
; (6.4)

where s = Ry=kyk22 is �xed. Sort the elements of s so that

jsi1 j � jsi2j � � � � � jsimj:
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If we knew x had exactly J nonzeros, then it is clear that the solution to (6.4) would be
given by

xij =

(
sign(sij ) if 1 � j � J
0 if J + 1 � j � m

:

Therefore, there are only m possible x-vectors we need to check to determine the optimal
solution for (6.4).

Let R1 = A.

Outer Iteration (k = 1; 2; : : : ; kmax):

Choose starting vector y such that Rky 6= 0.

Inner Iteration (i = 1; 2; : : : ; imax):

Fix y and let x solve max
x2Sm

xTRky

kxk22
:

Fix x and let y solve max
y2Sn

yTRT
k x

kyk22
:

End Inner Iteration.

Let xk = x, yk = y, dk =
xTkRkyk
kxkk22kykk22

.

Let Rk+1 = Rk � dkxky
T
k .

End Outer Iteration.

Figure 6.1: O'Leary-Peleg Algorithm

Figure 6.1 shows the O'Leary-Peleg algorithm to �nd the SDD approximation of rank-
kmax to an m�n matrix A. We specify a set number of iterations for the inner loop, but we
may use a heuristic stopping criterion instead. From (6.2) note that

kRk+1k2F = kRk � dkxky
T
k k2F

= kRkk2F �
(xTkRkyk)2

kxkk22kykk22
: (6.5)

So for a given (x; y) pair, we can predict exactly what the F-norm of Rk+1 will be if we
accept them. The method to determine when to stop the inner iterations proposed in [51] is
the following: At the beginning of the inner iterations, set change = 1. Then at the end of
each inner iteration, compute

newchange =
(xTRky)2

kxk22kyk22
; and
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improvement =
jnewchange� changej

change
;

change = newchange:

Once improvement falls below a given level, say 0.01, we terminate the inner iterations. In
other words, we iterate until the improvement in the residual has stagnated.

6.2 Reconstruction via the SDD

We will show that the algorithm can exactly reproduce a rank-1 matrix of the form d̂x̂ŷT

where d̂ > 0, x̂ 2 Sm, and ŷ 2 Sn, but it does depend on a �ne point that will be discussed
in the proof.

Proposition 6.1 Let A = d̂x̂ŷT where d̂ > 0, x̂ 2 Sm, and ŷ 2 Sn. Then the O'Leary-Peleg
algorithm can �nd d̂, x̂ and ŷ in exactly one inner iteration.

Proof. Choose y such that Ay 6= 0. The �rst step of the inner iteration is to �nd x 2 Sm
that maximizes

xTAy

kxk22
= (d̂ŷTy)

xT x̂

kxk22
If x̂ has more than one non-zero element, then the maximizer is not unique. However, if we
always break the tie by choosing the candidate with the largest number of nonzero elements,
then we will get x = x̂. A similar argument applies to the second step, and we get y = ŷ.
Lastly,

d =
xTAy

kxk22kyk22
= d̂

(x̂T x̂)(ŷT ŷ)

kx̂k22kŷk22
= d̂: 2

6.3 Convergence of the SDD

Next we will focus on the convergence of the semi-discrete approximation. First we will show
that the norm of the residual generated by the O'Leary-Peleg algorithm is strictly decreasing.
Then we will show that under certain circumstances, the approximation generated by the
O'Leary-Peleg algorithm converges linearly to the true matrix.

Proposition 6.2 The residual matrices generated by the O'Leary-Peleg Algorithm satisfy

kRk+1kF < kRkkF for all k:

Proof. Assume that Rk 6= 0. (Otherwise the algorithm has terminated at the exact solution.)
At the end of the inner iterations, we are guaranteed to have found xk and yk such that
xTkRkyk > 0. Using (6.5) and

0 <
(xTkRkyk)2

kxk22kyk22
� (xTkRkyk)

2 � kRkk2F ;
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we know that kRkk2F > kRk+1k2F � 0. 2

Now we will discuss several strategies for initializing the inner loop in the O'Leary-Peleg
algorithm and give convergence results for each.

Initialization Choice 1 (Max Element) At iteration k, assume Rk = [rij]. Choose y =
e|̂ where jr{̂|̂j = max

ij
jrijj.

Theorem 6.1 If we use initialization choice 1, then the sequence fAkg generated by the
O'Leary-Peleg algorithm converges to A in the Frobenius norm. Furthermore, the rate of
convergence is at least linear.

Proof. Without loss of generality, assume that Rk 6= 0 for all k. (Otherwise the algorithm
has terminated at the exact solution.) Let �k denote kRkk2F . Then �k 6= 0 for all k, and
by Proposition 6.2 we know that the sequence f�kg is strictly decreasing; furthermore, the
sequence is bounded below by zero. Thus, the sequence must converge to a limit point, say,
��. If �� = 0, then the proof is complete, so assume �� 6= 0. Then

�k � �� > 0 for all k: (6.6)

Set � = ��

mn
. By de�nition of convergence, there exists k̂(�) such that �k < �� + � for all

k > k̂(�). Fix k > k̂(�). Let [rij] = Rk. Choose an initial y = e|̂ where jr{̂|̂j = max
ij
jrijj.

Since we know the �rst part of the inner iteration picks the optimal x, it must be as least as
good as choosing x = e{̂, so

(xTkRkyk)2

kxkk22kykk22
� (eT{̂ Rke|̂)2

ke{̂k22ke|̂k22
� jr{̂|̂j � kRkk2F

mn
=

�k
mn

>
��

mn
= � (6.7)

Thus

�k+1 = �k � (xTkRkyk)2

kxkk22kykk22
< (�� + �)� � = ��:

But this contradicts (6.6), so we conclude that �� = 0. Hence, Ak ! A.
Now consider the rate of convergence. Using (6.5) and (6.7) we get

�k+1 � �k � �k
mn

=
�
1 � 1

mn

�
�k �

�
1 � 1

mn

�k
�0:

Hence the rate of convergence is at least linear. 2

We will construct an example to show further that the rate of convergence is at most
linear.

The next proposition shows that, for any n, we can construct an n� n matrix such that
the norm of the residual generated by the O'Leary-Peleg algorithm decreases at a constant
rate for the �rst n� 1 steps.
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Proposition 6.3 Using initialization choice 1, for any n, we can construct a matrix of size
n such that the residual matrices generated by the O'Leary-Peleg algorithm satisfy kRk+1k2F =
1
2
kRkk2F for k = 1; 2; : : : ; n� 1.

Proof. For a given n, A2 is given by

A2 = diagf2n�2; 2n�3; : : : ; 21; 20; 1g:

Then at the kth step, we can show by induction that Rk is equal to A with the �rst k � 1
diagonal elements deleted. This is trivially true for R1, so assume it is true for Rk, and we
will show that it is true for Rk+1. Using initialization choice 1, we choose y = ek which
corresponds to the largest element in Rk. Then

s = Rky =
h
0 � � � 0

p
2n�k�1 0 � � � 0

iT
;

so choosing x = ek is optimal. Thus we will have xk = yk = ek and dk =
p
2n�k�1, and so

Rk+1 = Rk� dkxkyTk will be equal to A with the �rst k+1 nonzeros deleted. (Note that this
particular triplet is the optimal triplet regardless of the inner iteration initialization choice.)

Next observe that

kRkk2F = 1 +
n�k�1X
i=0

2i = 2n�k:

Thus

kRk+1k2F = 2n�k�1 =
1

2
(2n�k) =

1

2
kRkk2F ;

for k = 1; : : : ; n� 1. 2

Note that we have chosen an example where the O'Leary-Peleg algorithm terminates. Al-
though we can �nd a �nite \semi-discrete" expansion of any matrixA, that is,

Pm
i=1

Pn
j=1 aijeie

T
j ,

we are uncertain whether or not the O'Leary-Peleg algorithm is guaranteed to always yield
a �nite expansion.

Initialization choice 1 may be computationally expensive if we store Rk implicitly as
A � Ak, so we consider some alternative initialization strategies. First we will propose
cycling through the unit vectors although the rate of convergence for this is only guaranteed
to be at least n-step linear. Next we will propose a threshold test that is at least linear and
requires much less work than the Max Element test.

Initialization Choice 2 (Cycling) Cycle through the unit vectors in some order, being
sure to use each possible unit vector as the starting y every n outer iterations. We refer to
each unit of n outer iterations as a sweep.

Theorem 6.2 If we use initialization choice 2, then the sequence fAkg generated by the
O'Leary-Peleg algorithm converges to A in the Frobenius norm. Furthermore, the rate of
convergence is at least n-step linear.
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Proof. The proof is similar to that for Theorem 6.1. Instead of considering each step, consider
each sweep. 2

This is a very weak result, but we can improve it by using a threshold test to determine
the initial y.

Initialization Choice 3 (Threshold) At iteration k, cycle through the unit vectors (be-
ginning where we left o� at the last iteration) until we have

kRkejk22 �
kRkk2F
n

;

and let y = ej. We are guaranteed that at least one unit vector will satisfy the above inequality
by de�nition of the F-norm.

Even though Rk is stored implicitly, this threshold test is easy to perform because we
only need to multiply Rk by a vector. Furthermore, if we accept the �rst vector we try, we
incur no extra computational expense because the computed vector s = Rky is used in the
inner iteration.

Theorem 6.3 If we use initialization choice 3, then the sequence fAkg generated by the
O'Leary-Peleg algorithm converges to A in the Frobenius norm. Furthermore, the rate of
convergence is at least linear.

Proof. The proof is similar to that for Theorem 6.1, and so is omitted. 2

6.4 Computational Comparisons

We will compare the three inner iteration initialization strategies for the O'Leary-Peleg
algorithm described in the last section.

In our �rst sequence of examples, we will use the O'Leary-Peleg algorithm to gener-
ate a approximation to a 25 � 25 dense matrix. Figure 6.2 plots the relative residual
(kRkkF =kR0kF ) against the number of outer iterations when we �x the number of inner
iterations at 1. The solid line represents the result of initialization choice 1 (Max Element).
It is does not reduce the residual as quickly as the other two choices because it is, in some
sense, too greedy. Initialization choices 2 (Cycle) and 3 (Threshold) are represented by the
dotted and dashed lines respectively. The threshold test does better until approximately
iteration 60, and then the two are nearly identical.

Figure 6.3 plots the relative residual against the number of outer iterations when we use
a varying number of inner iterations | the stopping heuristic is described at the end of
Section 6.1. Table 6.1 shows the average number of inner iterations for each initialization
choice. In the �gure, we see that initialization choice 2 (Cycling) seems to reduce the residual
in the fewest number of outer iterations. Figure 6.4 plots the relative residual against the
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Figure 6.2: Relative residual vs. number of outer iterations of three initialization strategies
for the O'Leary-Peleg Algorithm on a 25� 25 dense matrix using exactly one inner iteration
for each outer iteration. Initialization strategies 1, 2 and 3 are represented by the solid,
dotted, and dashed lines respectively.

Initialization Choice 1 2 3
Average Inner Iterations 4.73 4.93 4.52

Table 6.1: Average number of inner iteration for each of three initialization strategies for
the O'Leary-Peleg Algorithm on a 25 � 25 dense matrix using a variable number of inner
iterations each outer iteration.
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Figure 6.3: Relative residual vs. number of outer iterations for three initialization strategies
in the O'Leary-Peleg Algorithm on a 25� 25 dense matrix using a variable number of inner
iterations each outer iteration. Initialization strategies 1, 2 and 3 are represented by the
solid, dotted, and dashed lines respectively.
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Figure 6.4: Relative residual vs. number of inner iterations for three initialization strategies
in the O'Leary-Peleg Algorithm on a 25� 25 dense matrix using a variable number of inner
iterations each outer iteration. Initialization strategies 1, 2 and 3 are represented by the
solid, dotted, and dashed lines respectively.
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total number of inner iterations. In terms of inner iterations, the methods seem almost
identical initially, and the threshold method seems to be slightly better after approximately
100 inner iterations.

Figure 6.5 plots relative residual against the number of inner iterations for a sparse
100 � 100 matrix. We performed 200 outer iterations. Initially, the greediest strategy,
choice 1 (Max Element), does best, but in the end the threshold test seems to be the best.
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Figure 6.5: Relative residual vs. number of inner iterations for three initialization strategies
in the O'Leary-Peleg Algorithm on a 100� 100 sparse matrix (approx. 1000 nonzeros) using
a variable number of inner iterations each outer iteration. Initialization strategies 1, 2 and
3 are represented by the solid, dotted, and dashed lines respectively.

6.5 Using the SVD to Generate Starting Vectors

The alternating method described in Section 6.1 is one way to heuristically solve (6.3),
but here we introduce another possible approach. The singular value decomposition (SVD)
approximates an m� n matrix A by
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Ak =
h
u1 u2 � � � uk

i
2
66664
�1 0 � � � 0
0 �2 � � � 0
...

...
. . .

...
0 0 � � � �k

3
77775

2
66664
vT1
vT2
...
vTk

3
77775 =

kX
i=1

�iuiv
T
i :

| {z }
Uk

| {z }
�k

| {z }
V T
k

Here each ui 2 <m, each vi 2 <n, each �i 2 <, UT
k Uk = V T

k Vk = I and �1 � �2 � � � � � �k �
0. For convenience of discussion, assume n < m. After n iterations, the SVD reconstructs
A exactly, that is, An = A. (See Golub and Van Loan [30] for more information.)

If we consider the relaxed version of (6.3),

max
u2<m

v2<n

~F (u; v) � (uTRv)2

kuk22kvk22
; (6.8)

the �rst left, uR1 , and right, vR1 , singular vectors of R (not A) maximize ~F whose maximum
is the square of the �rst singular value of R, (�R1 )

2 by the Courant-Fischer Minimax Theo-
rem [30]. This is an upper bound for the integer program (6.3). Furthermore, we can get
a lower bound for (6.3) since ~F is bounded below in the relaxed case by the square of the
least singular value of R, (�Rn )

2.
We can use the solution of the relaxed problem (6.8), which we will denote by u and v,

to generate an approximate solution to the discrete problem by �nding an x 2 Sm that is a
discrete approximation to u, that is, an x that solves

min
x2Sm

x̂�x=kxk2

kx̂� uk2: (6.9)

This problem is easy to solve. Suppose that x has exactly J nonzeros, and order the elements
of u so that

jui1j � jui2j � � � � � juimj:
Then choose

xij =

(
sign(uij) if 1 � j � J
0 if J + 1 � j � m

:

Therefore, there are only m possible x-vectors we need to check to determine the optimal
solution for (6.9). We can �nd y in a similar fashion.

This leads to two possible initialization strategies:

Initialization Choice 4 (SVD Approximation) At iteration k, use the discrete x and
y vectors that are respectively closest to the �rst left and right singular vectors of Rk. Do
not do any inner iterations.

Initialization Choice 5 (SVD Start) At iteration k, chose the discrete y closest to the
�rst right singular vector of Rk.
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We can show that initialization choice 5 yields a linearly convergent method.

Theorem 6.4 If we use initialization choice 5, then the sequence fAkg generated by the
O'Leary-Peleg algorithm converges to A in the Frobenius norm. Furthermore, the rate of
convergence is at least linear.

Proof. Without loss of generality, assume that Rk 6= 0 for all k. (Otherwise the algorithm
has terminated at the exact solution.) Let �k denote kRkk2F . Then �k 6= 0 for all k, and
by Proposition 6.2 we know that the sequence f�kg is strictly decreasing; furthermore, the
sequence is bounded below by zero. Thus, the sequence must converge to a limit point, say,
��. If �� = 0, then the proof is complete, so assume �� 6= 0. Then

�k � �� > 0 for all k: (6.10)

Set

� =
��

minfm;ngm2n2
:

By de�nition of convergence, there exists k̂(�) such that �k < �� + � for all k > k̂(�). Fix
k > k̂(�). Let �, u and v be the �rst singular value, left singular vector and right singular
vector or Rk respectively, and assume that Rk = [rij]. Choose an initial y that solves

min
y2Sn

ŷ=y=kyk2

kŷ � vk2:

Without loss of generality, assume that the elements of v are ordered so that

jv1j � jv2j � : : : � jvnj;
and assume that y has J nonzeros. Now observe that

� = uTRv =
JX
j=1

vj
mX
i=1

rijui +
nX

j=J+1

vj
mX
i=1

rijui;

and the largest magnitude elements of v must correspond to the largest magnitude elements
of Ru, so we can conclude that

JX
j=1

vj
mX
i=1

rijui � J

n
�:

Each vi is less than or equal to one, so substituting y in place of v yields

nX
j=1

yj
mX
i=1

rijui � J�

n
:

(Note that this guarantees us that Ry 6= 0.) Rewriting this, we get

mX
i=1

ui
nX
j=1

rijyj � J�

n
;
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so there exists {̂ such that

u{̂
nX
j=1

rijyj � J�

mn
:

So, if we set x = e{̂, we have

(xTkRkyk)2

kxkk22kykk22
� J2�2

Jm2n2
� �2

m2n2
� kRkk2F

minfm;ng �m2n2

=
�k

minfm;ng �m2n2
� ��

minfm;ng �m2n2
= � (6.11)

Thus

�k+1 = �k � (xTkRkyk)2

kxkk22kykk22
< (�� + �)� � = ��:

But this contradicts (6.10), so we conclude that �� = 0. Hence, Ak ! A.
Now consider the rate of convergence. Using (6.5) and (6.11) we get

�k+1 � �k � �k
minfm;ng �m2n2

=

 
1 � 1

minfm;ng �m2n2

!
�k

�
 
1 � 1

minfm;ng �m2n2

!k
�0:

Hence the rate of convergence is at least linear. 2

Figure 6.6 plots the relative residual against the number of outer iterations for initializa-
tion choice 4 and 1. For the Max Element initialization, we allow 3 inner iterations. This is
because we estimate it would take approximately the same amount of work to generate the
left and right singular vectors for Rk.

Figure 6.7 plots the relative residual against the number of outer iterations for initial-
ization choices 1 and 5 using a variable number of inner iterations. Here we see that using
the SVD start does better in terms of outer iterations. Table 6.2 shows that SVD start only
requires about 2.6 inner iterations per outer iteration, but remember that some work was
required to generate the left and right singular vectors of Rk, so we argue that the work is
about equal.

Initialization Choice 1 5
Average Inner Iterations 4.73 2.61

Table 6.2: Average number of inner iteration for two initialization strategies for the O'Leary-
Peleg Algorithm on a 25� 25 dense matrix using a variable number of inner iterations each
outer iteration.
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Figure 6.6: Relative residual vs. number of outer iterations comparing initialization choice 4
(dashed line) and initialization choice 1 with three inner iterations (solid line) in the O'Leary-
Peleg Algorithm on a 25 � 25 dense matrix.
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Figure 6.7: Relative residual vs. number of outer iterations comparing the initialization
choice 5 (dashed line) and initialization choice 1 (solid line) in the O'Leary-Peleg Algorithm
on a 25 � 25 dense matrix. Each is allowed a variable number of inner iterations.
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Chapter 7

The Vector Space Model in Information

Retrieval

Here we describe the problem in information retrieval and give a detailed description of the
vector space model. In the next chapter, we will discuss an extension of the vector space
model called latent semantic indexing and show how this model can be improved using the
semi-discrete decomposition described in the previous chapter.

7.1 Introduction

There is an unprecedented amount of electronic textual information available today. This
information is useless unless it can be e�ciently and e�ectively searched. In the �eld of in-
formation retrieval, we match queries, that is, statements of information needs, with relevant
documents, that is, information items.

Most people have used an information retrieval system at one point or another. Examples
include electronic library search catalogs, World WideWeb search engines such as Alta Vista,
and Unix tools such as the grep utility. To see both the e�ectiveness and short-comings of
an information retrieval system, we have an example of several queries in the University of
Maryland VICTOR electronic library catalog in Figure 7.1. For each query, it took only a
matter of seconds to search through the more than 2.4 million volumes [65] in the University

Query Items Found
German, math, dictionary 0
German, mathematical, dictionary 2
German, mathematical, dictionaries 3
German, mathematics, dictionary 6
German, mathematics, dictionaries 10

Figure 7.1: Search results from �ve semantically equivalent queries in the University of
Maryland VICTOR electronic library catalog.
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of Maryland College Park library | an indication of how e�cient modern search engines
are. On the other hand, we see that each of the semantically equivalent queries returned a
di�erent number of items, and one did not return anything at all | an indication of how far
we have yet to go.

There are many di�erent approaches to information retrieval. People are most familiar
with the Boolean system: search terms are connected with Boolean operators such as AND,
OR, and NOT. Boolean systems can be quite e�cient, but are not always very e�ective. The
Boolean system is but one conceptual model for an information retrieval system. Another
possible model is based on probability theory; the most well-known example of this is the
INQUERY system [13]. In this model, each document is assigned a probability of being
relevant. The probability is determined via an inference net. A brief survey of these and other
modern information retrieval techniques is given in Salton [56]; a more in-depth treatment
is given in Frakes and Baeza-Yates [27].

We are concerned here with a conceptual model known as the vector space model. This
model was proposed over 25 years ago. One implementation of this idea is SMART, see e.g.
[59]. In the vector space model, both documents and queries are represented as vectors and
compared via inner products. This model will be explained in detail in Section 7.2. One of the
most important issues in the vector space model is term weighting, the determination of the
entries in the vectors representing the documents and queries. We present a computational
comparison of the weighting strategies in Section 7.3 and describe evaluation criteria. Many
advances and variations have been proposed for the vector space model; these are presented
in Section 7.4.

7.2 The Vector Space Model

7.2.1 Preprocessing of the Documents

In the vector space model, we represent documents and queries as vectors. Before we can
construct the representation, we must compile a list of index terms by preprocessing the
documents. We do this as follows:

1. Transform the documents to a list of words by removing all punctuation and numbers.
Convert every letter to lower case.

2. Remove stop words. Stop words are common words that contain no semantic content
such as \of", \next", and \already." This is language and context dependent. Standard
lists of stop words exist for the English language. We performed stop word removal
using the program and stop word list in Frakes and Baeza-Yates [27].

3. Remove words that appear in only one document. This greatly reduces the number of
terms we need to handle. The remaining words form the set of index terms.

This is but one way to preprocess the documents. More elaborate systems might be used
in other settings. For example, we might want to treat upper- and lowercase di�erently.
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Punctuation can also be meaningful; in particular, we may want to do something special
with hyphenations. There is also no reason to limit ourselves to just single words; we may
want to look at phrases as well (see Section 7.4).

One common preprocessing technique that we did not use is stemming which reduces
words to their common stems. For example, \climb," \climbs," and \climbing" would all
be reduced to the stem \climb." This is a heuristic method with many shortcomings, but
the example in Figure 7.1 illustrates why stemming might be useful. See Frakes and Baeza-
Yates [27] for more information and a sample stemming program.

Lastly, we have speci�ed that, after removing stop words, we will use only terms that
appear in at least two documents. In some situations we may �nd it useful to use all the
remaining terms, while in other situations we may want to trim the list even further by
removing any term that does not appear in at least, say, �ve documents.

7.2.2 Description of the Model

We will now formulate the vector space model. Suppose that we have n documents and m
index terms, hereafter referred to as just terms. We represent the documents as an m � n
matrix, A = [aij]; where aij represents the weight of term i in document j. We describe how
to compute the weight of a term in a document in the next section. The jth column of A
represents document j. Note that the matrix will be sparse since only a few of the possible
terms will appear in each document.

Queries are preprocessed in much the same way as documents. A query is represented as
an m-vector, q = [qi]; where qi represents the weight of term i in the query.

The n-vector
s = qTA;

is the vector of scores. The jth element of s, sj = qTAej where ej is the jth unit vector,
represents the score of document j. For a given query, the documents are ranked according
to score, highest to lowest.

7.2.3 Term Weighting

The success or failure of the vector space method is based on the term weighting. There
has been much research on term weighting techniques but little consensus on which method
is best. We will summarize a number of the techniques that have been suggested in the
literature. Computational comparisons of these techniques will be given in Section 7.3.

There are three components to a weighting scheme. The ij-th entry of A is computed by

aij = gi tij dj;

where gi is the global weight of the ith term, tij is the local weight of the ith term in the jth
document, and dj is the normalization factor for the jth document.
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Tables 7.1 { 7.3 list possible formulas for each component. Here we assume that fij is the
frequency of term i in document j, all logs are base two, and � denotes the signum function,

�(t) =

(
1 if t > 0;
0 if t = 0:

Table 7.1 lists some popular local weight formulas; each row of the table gives a unique
character symbol, the formula for tij, a brief description that is the name that the formula
is generally known by, and one or more references. Local term formulas depend only on the
frequencies within the document; they do not depend on inter-document frequencies.

The binary formula (b) and term frequency formula (t) are simple and obvious possibil-
ities for the term frequency component. A major drawback of the binary formula is that
it gives every word that appears in a document equal relevance; this might, however, be
useful when the number of times a word appears is not considered important. The frequency
formula gives more credit to words that appear more frequently, but often too much credit.
For instance, a word that appears ten times in a document is not usually ten times more
important than a word that only appears once. What we would like to do is to give credit to
any word that appears and then give some additional credit to words that appear frequently.
The augmented normalized term frequency (c) is one such attempt. This gives a value of
0.5 for appearing in the document plus a bonus (no more than 0.5) that depends on the fre-
quency. A more general formula was proposed by Croft [15]; this formula is parameterized
by a value K,

tij = K �(fij) + (1�K)

 
fij

maxk fkj

!
:

It is suggested that K be set to something low (e.g. 0.3) for large documents and to higher
values (e.g. 0.5) for shorter documents. Logarithms are another way to deemphasize the
e�ect of frequency. Two di�erent logarithm term frequency components are popular in the
literature; here we call them the log (l) and alternate log (a).

A comparison of the di�erent frequency components for frequencies ranging between 0 and
100 is shown in Figure 7.2; we assume that the maximum frequency (used in the augmented
normalized term frequency formula) is 100. Observe that the raw frequency count grows
very quickly whereas the other local weightings grow more slowly. Although it is not clear
in the picture, every local weight formula assigns a value of zero to tij if term i does not
appear in document j.

Global term weights (see Table 7.2) are used to place emphasis on terms that are discrim-
inating, and they are based on the dispersion of a particular term throughout the documents.
For example, the inverse document frequency weighting (f) will be zero if the given term
appears in every document, and the weight increases as the number of documents in which
the term appears decreases. Various other inverse document frequency (IDF) measures have
been proposed; see Frakes and Baeza-Yates for some examples. The probabilistic inverse
weight (p), is also referred to as an IDF weight. It assigns weights ranging from �1 for
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Symbol Formula for tij Brief Description Ref.

b �(fij) Binary [58]

t fij Term Frequency [58]

c :5 �(fij) + :5

 
fij

maxk fkj

!
Augmented Normalized
Term Frequency

[27, 58]

l log(fij + 1) Log [27]

a �(fij)(log(fij) + 1) Alternate Log [21]

Table 7.1: Local Term Weight Formulas
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Figure 7.2: Comparison of Local Term Weighting Schemes
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Symbol Formula for gi Brief Description Ref.

x 1 No change [58]

f log

 
nPn

k=1 �(fik)

!
Inverse Document
Frequency (IDF)

[58]

p log

 
n �Pn

k=1 �(fik)Pn
k=1 �(fik)

!
Probabilistic Inverse [27, 58]

g

Pn
k=1 fikPn

k=1 �(fik)
GfIdf [21]

e 1 +
nX
j=1

 
pij log pij
log n

!
Entropy
(pij = fij=

Pn
k=1 fik)

[21, 27]

Table 7.2: Global Term Weight Formulas

Symbol Formula for di Brief Description Ref.

x 1 No Change [58]

n (
Pm

k=1(gktkj)
2)
�1=2

Normal [58]

Table 7.3: Normalization Formulas
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a term that appears in every document1 to log(n � 1) for a term that appears in only one
document. The GfIdf (g) computes the ratio of the total number of times the term appears
in the collection to the number of documents it appears in. The entropy weight (e) assigns
weights between zero and one, zero for a term that appears at the same frequency in every
document and one for a term that appears in only one document. Global weighting is very
successful as we shall see when we look at the experimental results in Section 7.3.

The use of global weighting can, in theory, eliminate the need for stop word removal since
stop words should have very small global weights. In practice, however, it is easier to remove
the stop words in the preprocessing phase so that there are fewer terms to handle.

Once we have computed the local and global term weights, it is often useful to normalize
the columns in the �nal matrix. If we do not, short documents may not be recognized as
relevant. We present two choices in Table 7.3: no normalization (x) and normalization by
the 2-norm (n). Other normalization strategies are possible, but the 2-norm is the most
popular.

In the vector space method literature, the cosine score is often mentioned. This is com-
puted by

sj =
qTAej

kqk2kAejk2 ;

which gives the angle between the vector representing the query, q, and the vector represent-
ing the document Aej. If the columns of A and q have been normalized, the inner product is
equivalent to the cosine score. Thus whenever we choose the n normalization weighting for
the documents, we are using a scoring equivalent to the cosine score. Note that normalizing
q makes no di�erence in the �nal ranking of documents, so we never do it.

Thus far we have explained how to weight the documents, but not how to weight the
query. The query weighting is

qi = gi t̂i;

where gi is the global term weight computed as usual from the frequency counts in the
documents and t̂i is the local term weight that is computed using the local weight formulas
with fij replaced by f̂i, the frequency of term i in the query. As mentioned before, there is
no need to normalize the query.

A weighting scheme is speci�ed by specifying a six-letter combination that indicates local,
global, and normalization components for the term-document matrix and the local, global,
and normalization components for the query. (The normalization component for the query
will always be x, but we specify it anyway.) For example, if we were to specify a weighting
scheme of axn.afx, we would use the following formulas:

aij =

8<
: (log(fij) + 1) �

�Pm
k=1 (log(fkj) + 1)2

��1=2
if fij 6= 0;

0 otherwise,

1In practice, if a term were to appear in every document, it would generally be removed from the list of

index words.
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and

qi =

8><
>:
�
log(f̂i) + 1

�
� log

 
nPn

k=1 �(fik)

!
if f̂i 6= 0;

0 otherwise.

This particular weighting is described in Buckley et al. [10].
We have a total of 5 � 5 � 2 = 50 possible weighting schemes for the documents and

5 � 5 = 25 possible weighting schemes for the queries, yielding a possible 50 � 25 = 1250
possible weightings. Rather than compare all of these, we will restrict our attention to only
a few schemes. These are summarized in Table 7.4. Some are schemes that have been
suggested in the literature, and the remainder are modi�cations of those schemes.

In addition to the weightings discussed above, there are two additional weightings that
we will use; they were suggested by Singhal et al. [61]. We will talk more about where these
weightings originated in Section 7.4. The �rst is called the OKAPI weight, that shall be
denoted by okapi in the tests. For OKAPI, the weight on the term-document matrix is
given by

aij =

fij � log
 
n�Pn

k=1 fik + 0:5Pn
k=1 fik + 0:5

!

2 �
 
0:25 + 0:75

 
dj

meankdk

!!
+ fij

;

where dj is the length of document j in bytes, but we set dj equal to the number of terms
in document j. The query is just the raw term frequency weight, i.e.,

qi = f̂i:

The second weight is called the INQUERY weight, denoted by inquery, and is de�ned as

aij = 0:4 �(fij) + 0:6 �
 
0:4 �Hj + 0:6 � log(fij + 0:5)

log(maxk fkj + 1:0)

!
�
log

 
nPn

k=1 �(fik)

!

log n
;

if fij 6= 0, and aij = 0 otherwise. Here,

Hj =

(
1:0 if maxk fkj � 25;

25=maxk fkj otherwise:

Raw term frequency is used for the query:

qi = f̂i:

7.3 Experimental Comparisons

In this section, we will describe the test sets we are working with and the basis for comparison,
and present computational results.
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SMART-like weighting schemes

txx.txx Raw Frequency.
txn.txx Original SMART weighting [21, 58].
axn.afx SMART \ltc" weighting [10].
lxn.lfx Modi�cation of \ltc" weight.

Weightings from Dumais [21]

tgn.tgx Term frequency plus GfIdf.
tfn.tfx IDF plus term frequency.
ten.tex Entropy with term frequency.
len.lex Log-Entropy.

Weightings from Dumais [21] without
Global Weights on Term-Document Matrix

txn.tgx Term frequency plus GfIdf.
txn.tfx IDF plus term frequency.
txn.tex Entropy with term frequency.
lxn.lex Log-Entropy.

Weightings from Salton & Buckley [58]

bxx.bxx Coordination level binary vectors.
bxx.bpx Binary independence probabilistic.
bfx.bfx Classical IDF without normalization.
tfn.cfx Best fully weighted system.
txn.cfx Weighted with inverse frequency.
tfx.tfx Classical term frequency plus IDF.
cxx.bpx Best weighted probabilistic.

Other Weightings

cxn.bpx cxn.lpx cxn.tpx cxn.bfx

cxn.lfx cxn.tfx lxn.bpx lxn.lpx

lxn.tpx lxn.bfx lxn.lfx lxn.tfx

Table 7.4: Term Weightings
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7.3.1 Test Collections

An information retrieval system is \good" if it ranks the relevant documents high and the
irrelevant documents low. In order to evaluate an information retrieval system, therefore, we
need a set of documents, one or more queries, and a set of relevance judgments for each query.
Relevance judgments are binary; a document is either relevant or it is not. The validity of
the relevance judgments is often questioned, but we will not consider these arguments here;
see, e.g., Salton [57].

MEDLINE CRANFIELD CISI
Number of Documents 1033 1399 1460
Number of (Indexing) Terms 5526 4598 5574
Avg. No. of Terms/Document 48 57 46
Avg. No. of Documents/Term 9 17 12
% Nonzero Entries in Matrix 0.87 1.24 0.82
Storage for Matrix (MB): 0.4 0.6 0.5
Number of Queries 30 225 35
Avg. No. of Terms/Query 10 9 7
Avg. No. Relevant/Query 23 8 50

Table 7.5: Characteristics of the Information Retrieval Test Sets

A number of standard test collections are available. We will be focusing on three: MED-
LINE, a collection of medical abstracts; CRANFIELD, a collection of aerospace abstracts;
and CISI, a collection of library science abstracts. A summary of the characteristics of these
test sets is given in Table 7.5. Since these are collections of abstracts, they only contain a
small number of terms (about 50) per document. We have sparse term-document matrices,
all around 1% dense. The queries contain approximately eight key terms each, and so are
reasonably speci�c. Both MEDLINE and CISI have a small number of queries (about 30)
and a large number of relevant documents per query; CRANFIELD, on the other hand, has
a large number of queries but only a small number of relevant documents per query.

The test sets described in Table 7.5 are considered small by modern standards. For the
past �ve years, the TREC competition [32, 33, 34] has been providing test sets with hundreds
of thousands of documents. Unfortunately, it is di�cult to prepare code for TREC data,
and there is little in between in terms of size.

7.3.2 Performance Evaluation Criteria

We will compare the systems by looking at some standard measures used in the information
retrieval community: non-interpolated average precision, interpolated average precision, and
r-precision.
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i ri Recall Precision
1 1 0.027 1.000
5 5 0.135 1.000
10 9 0.243 0.900
20 16 0.432 0.800
40 27 0.730 0.675
60 35 0.946 0.583
71 37 1.000 0.5211

Non-Interp Avg Prec 0.763
Average Precision 0.781
R-Precision 0.703

Table 7.6: Sample recall and precision values, interpolated and non-interpolated average
precision, and r-precision for the �rst MEDLINE query using the vector space model with
weighting cxn.bpx. There are a total of 37 relevant documents for this query.

Non-interpolated average precision. When we evaluate a query, we receive an ordered
list of documents. Let ri denote the number of relevant documents up to and including
position i in the ordered list. For each document, we compute two values: recall and precision.
The recall at the ith document is the proportion of relevant documents returned so far, that
is,

ri
rn
:

(Note that rn is the total number of relevant documents.) The precision at the ith document,
pi, is the proportion of documents returned so far that are relevant, that is,

pi =
ri
i
:

Let I be the set of positions of the relevant documents in the ordered list, then the non-
interpolated average precision for a single query is de�ned as

1

rn

X
i2I

pi:

The non-interpolated average precision for multiple queries is de�ned as the mean of the
non-interpolated average precisions for all queries.

The �rst MEDLINE query has a total of 37 relevant documents. Table 7.6 presents some
sample recall and precision values, and Figure 7.3 plots the 37 recall-precision pairs as circles
(o). We used the cxn.bpxweighting in this example. The non-interpolated average precision
for the �rst query is 0.763, and the (mean) non-interpolated average precision over all queries
is 0.521.
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Mean Std Deviation
Non-Interp Avg Prec 0.521 0.200
Average Precision 0.536 0.191
R-Precision 0.495 0.175

Table 7.7: Various measures for the thirty MEDLINE queries using the vector space method
with weighting cxn.bpx.

Interpolated average precision. The pseudo-precision at recall level x 2 [0; 1], ~p(x), is
de�ned as

~p(x) = maxfpi j ri � x � rn; i = 1; : : : ; ng :
The N -point interpolated average precision for a single query is de�ned as

1

N

N�1X
i=0

~p
�

i

N � 1

�
:

Typically, 11-point interpolated average precision is used. The N -point interpolated average
precision for multiple queries is the mean of the interpolated average precisions for all queries.

The precision-recall graph plots the N pseudo-precision points generated above against
the N evenly spaced recall values between 0 and 1. This is always a non-increasing curve.

Figure 7.3 shows the interpolated precision-recall graph for the �rst query in the MED-
LINE test set. The circles (o) represent precision-recall data points from the 37 relevant
documents, that is, f(ri; pi)gi2I, and the asterisks (*) represent the interpolated data points,
~p, at 11 evenly-spaced recall levels. The asterisks are connected to form the precision-recall
curve. The interpolated average precision for the �rst query in MEDLINE is 0.781.

For multiple queries, we plot the mean of the pseudo-precision points for each of the N
recall values and upper and lower \error lines" that show the standard deviations from each
point along the precision recall curve for multiple queries.

Figure 7.4 shows the precision-recall curve for multiple queries including the \error lines."
The asterisks (*) represent the mean value of all pseudo-precisions at each recall level, and
the circles (o) represent the points one standard deviation away on either side. The value of
the interpolated average precision over all MEDLINE queries is 0.536.

R-precision. For a single query, r-precision is the precision after r documents have been
returned, that is,

prn :

The r-precision for multiple queries is the mean of the r-precisions of all queries.
The r-precision for the �rst query of MEDLINE is 0.703 and the average r-precision for

all queries of MEDLINE is 0.495.

70



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Recall

P
re

ci
si

on

Figure 7.3: The 11-point interpolated precision-recall curve for the �rst query in the the
MEDLINE data set with weighting cxn.bpx. The circles (o) represent the 37 precision-
recall pairs from the relevant documents, and the asterisks (*) represent the interpolated
points. The asterisks are connected forming the precision-recall curve.
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Figure 7.4: The 11-point interpolated precision-recall curve for the 30 queries in the MED-
LINE data set using the weighting cxn.bpx. At each of the 11 recall levels, the asterisk (*)
represents the mean of all pseudo-precisions at that level and the circles (o) represent the
distance one standard deviation from the mean.
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Weighting Average Non-Interp R-Precision
Precision Avg Prec
mean s.d. mean s.d. mean s.d.

lxn.bpx 0.546 0.185 0.536 0.195 0.504 0.163
lxn.bfx 0.546 0.185 0.536 0.194 0.501 0.164
lxn.lpx 0.538 0.190 0.529 0.202 0.499 0.172
lxn.lfx 0.537 0.191 0.528 0.202 0.499 0.172
lxn.lfx 0.537 0.191 0.528 0.202 0.499 0.172
cxn.bpx 0.536 0.190 0.521 0.200 0.494 0.175
cxx.bpx 0.536 0.190 0.521 0.200 0.494 0.175
cxn.bfx 0.536 0.189 0.521 0.199 0.494 0.175
tgn.tgx 0.535 0.193 0.513 0.204 0.493 0.198
okapi 0.535 0.199 0.521 0.213 0.489 0.187
lxn.tpx 0.534 0.192 0.521 0.202 0.498 0.178
axn.afx 0.533 0.191 0.520 0.200 0.504 0.180
cxn.lpx 0.532 0.196 0.516 0.204 0.496 0.181
cxn.lfx 0.532 0.194 0.516 0.204 0.495 0.181
lxn.tfx 0.532 0.193 0.520 0.203 0.496 0.181
cxn.tpx 0.526 0.197 0.509 0.206 0.484 0.182
cxn.tfx 0.525 0.195 0.507 0.204 0.482 0.180
txn.cfx 0.525 0.182 0.513 0.193 0.497 0.171
tfn.cfx 0.525 0.180 0.508 0.193 0.482 0.164
txn.tgx 0.522 0.187 0.503 0.198 0.481 0.185
txn.tfx 0.517 0.186 0.501 0.194 0.482 0.183
len.lex 0.516 0.191 0.500 0.205 0.482 0.183
lxn.lex 0.516 0.191 0.500 0.205 0.480 0.184
tfn.tfx 0.516 0.186 0.495 0.195 0.478 0.178
tfx.tfx 0.516 0.186 0.495 0.195 0.478 0.178
bxx.bpx 0.498 0.198 0.485 0.209 0.449 0.182
ten.tex 0.483 0.192 0.467 0.201 0.438 0.187
txn.tex 0.483 0.192 0.467 0.201 0.438 0.187
txx.txx 0.482 0.193 0.467 0.201 0.436 0.185
txn.txx 0.482 0.192 0.467 0.201 0.436 0.185
bfx.bfx 0.479 0.193 0.460 0.203 0.443 0.187
bxx.bxx 0.470 0.192 0.455 0.200 0.430 0.173
inquery 0.422 0.215 0.392 0.220 0.381 0.208

Table 7.8: Results on the MEDLINE data set for various weightings. The results are sorted
highest to lowest in terms of average precision.
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Weighting Average Non-Interp R-Precision
Precision Avg Prec
mean s.d. mean s.d. mean s.d.

okapi 0.461 0.687 0.401 0.687 0.336 0.211
lxn.lpx 0.457 0.686 0.396 0.260 0.339 0.211
lxn.lfx 0.456 0.687 0.396 0.262 0.330 0.212
lxn.lfx 0.456 0.687 0.396 0.262 0.330 0.212
lxn.tfx 0.456 0.686 0.396 0.260 0.330 0.213
lxn.tpx 0.456 0.686 0.395 0.259 0.336 0.213
lxn.bpx 0.455 0.687 0.395 0.261 0.340 0.209
lxn.bfx 0.455 0.686 0.394 0.258 0.330 0.209
axn.afx 0.454 0.686 0.393 0.260 0.331 0.214
cxn.lfx 0.442 0.686 0.382 0.257 0.325 0.207
cxn.bfx 0.441 0.685 0.381 0.256 0.322 0.204
cxn.tfx 0.439 0.686 0.380 0.259 0.325 0.206
cxn.lpx 0.436 0.685 0.376 0.255 0.321 0.207
cxn.bpx 0.434 0.684 0.374 0.251 0.320 0.203
cxx.bpx 0.434 0.684 0.374 0.251 0.320 0.203
txn.cfx 0.433 0.688 0.372 0.261 0.317 0.209
cxn.tpx 0.433 0.686 0.373 0.255 0.321 0.206
txn.tfx 0.430 0.688 0.370 0.260 0.317 0.208
tfn.tfx 0.425 0.688 0.363 0.258 0.307 0.210
tfx.tfx 0.425 0.688 0.363 0.258 0.307 0.210
lxn.lex 0.425 0.687 0.365 0.258 0.316 0.205
len.lex 0.424 0.687 0.364 0.257 0.312 0.205
tfn.cfx 0.424 0.687 0.363 0.257 0.306 0.210
ten.tex 0.397 0.685 0.337 0.248 0.292 0.200
txn.txx 0.396 0.685 0.336 0.247 0.290 0.199
txn.tex 0.395 0.685 0.335 0.248 0.287 0.199
txx.txx 0.395 0.685 0.335 0.247 0.287 0.200
bxx.bpx 0.392 0.684 0.333 0.240 0.286 0.192
txn.tgx 0.376 0.687 0.316 0.250 0.264 0.205
bxx.bxx 0.366 0.682 0.306 0.230 0.268 0.190
bfx.bfx 0.361 0.685 0.301 0.235 0.262 0.194
tgn.tgx 0.341 0.688 0.282 0.245 0.238 0.198
inquery 0.296 0.678 0.232 0.198 0.205 0.181

Table 7.9: Results on the CRANFIELD data set for various weightings. The results are
sorted highest to lowest in terms of average precision.
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Weighting Average Non-Interp R-Precision
Precision Avg Prec
mean s.d. mean s.d. mean s.d.

okapi 0.186 0.114 0.161 0.107 0.178 0.126
lxn.tfx 0.184 0.119 0.160 0.112 0.182 0.131
lxn.tpx 0.183 0.116 0.160 0.110 0.183 0.125
lxn.lpx 0.183 0.112 0.159 0.106 0.183 0.123
lxn.lfx 0.182 0.115 0.158 0.107 0.180 0.127
lxn.lfx 0.182 0.115 0.158 0.107 0.180 0.127
cxn.tfx 0.182 0.112 0.155 0.104 0.180 0.128
cxn.tpx 0.182 0.110 0.156 0.103 0.178 0.124
cxn.lfx 0.180 0.107 0.153 0.097 0.180 0.124
axn.afx 0.179 0.118 0.157 0.111 0.179 0.125
cxn.lpx 0.179 0.105 0.154 0.097 0.177 0.121
tfn.tfx 0.178 0.112 0.157 0.107 0.181 0.117
tfx.tfx 0.178 0.112 0.157 0.107 0.181 0.117
lxn.bpx 0.178 0.104 0.154 0.097 0.182 0.124
lxn.bfx 0.177 0.106 0.152 0.097 0.177 0.123
txn.cfx 0.176 0.114 0.153 0.107 0.164 0.127
tfn.cfx 0.176 0.105 0.154 0.099 0.182 0.112
txn.tfx 0.175 0.119 0.154 0.115 0.166 0.127
cxn.bpx 0.175 0.101 0.148 0.091 0.173 0.118
cxx.bpx 0.175 0.101 0.148 0.091 0.173 0.118
cxn.bfx 0.174 0.102 0.146 0.090 0.175 0.120
bxx.bpx 0.166 0.091 0.140 0.081 0.165 0.108
bfx.bfx 0.163 0.086 0.134 0.075 0.161 0.099
lxn.lex 0.143 0.114 0.123 0.103 0.141 0.118
len.lex 0.143 0.113 0.123 0.103 0.141 0.118
inquery 0.140 0.082 0.109 0.069 0.125 0.106
bxx.bxx 0.137 0.086 0.113 0.074 0.137 0.106
ten.tex 0.134 0.115 0.118 0.108 0.127 0.119
txn.tex 0.134 0.115 0.118 0.108 0.127 0.119
txn.txx 0.134 0.115 0.118 0.108 0.127 0.119
txx.txx 0.134 0.115 0.118 0.108 0.127 0.119
txn.tgx 0.129 0.111 0.109 0.102 0.116 0.111
tgn.tgx 0.126 0.110 0.104 0.102 0.108 0.110

Table 7.10: Results on the CISI data set for various weightings. The results are sorted
highest to lowest in terms of average precision.
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MEDLINE CRANFIELD CISI
lxn.bfx 0.546 okapi 0.461 okapi 0.186
lxn.bpx 0.546 lxn.lpx 0.457 lxn.tfx 0.184
lxn.lpx 0.538 lxn.lfx 0.456 lxn.lpx 0.183
lxn.lfx 0.537 lxn.tpx 0.456 lxn.tpx 0.183
cxx.bpx 0.536 lxn.lfx 0.456 lxn.lfx 0.182
cxn.bpx 0.536 lxn.tfx 0.456 cxn.tpx 0.182
cxn.bfx 0.536 lxn.bpx 0.456 cxn.tfx 0.182

Table 7.11: The best weightings for each data set in terms of (interpolated) average precision.

7.3.3 Computational Results

Tables 7.8, 7.9, and 7.10 show numerical results for the MEDLINE, CRANFIELD and CISI
data sets using the weightings listed in Table 7.4. For each test, we report the mean and
standard deviation for the average precision, the non-interpolated average precision, and the
r-precision. In general, one compares methods via the average precision measure. As we
can see from the three tables, the average precision, non-interpolated average precision and
r-precision are closely correlated.

The okapi weighting is the best on the CRANFIELD and CISI data. We observe that in
all three cases, the matrix weighting lxn gives good results. The weighting cxn is also good
for the MEDLINE and CISI sets and axn is good for the CRANFIELD test set. The binary
matrix weightings, bfx and bxx, and the raw term frequency weightings, txx and txn, tend
to be ranked towards the bottom, indicating that more sophisticated terms weightings, such
as the log weights, should be employed.

It seemed to make little di�erence which query weighting was chosen, probably because
the di�erence between the schemes is minimal when the terms only appear once or twice.

In terms of global weighting, note that the schemes that did not employ global term
weighting on the matrix generally fared as well or better than the schemes that did use
global weighting on the term document matrix. In particular, compare the weightings with
and without a global weight on the term-document matrix. We suggest applying global
weights to the query. The best global weightings were the Inverse Document Frequency (f)
and the Probabilistic Inverse (p) weightings.

Table 7.11 lists the best weightings (in terms of average precision) for each data set.

7.4 Recent Advances in the Vector Space Model

A number of extensions and improvements to the vector space model have been proposed.
Most important is the latent semantic indexing (LSI) model described in the next chapter.
Here we will give a brief survey of some of the other advances, many of which can also be
applied in the LSI model.
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Started in 1992, the annual Text REtrieval Conference (TREC) spurned many new de-
velopments in information retrieval and �ltering. TREC participants have access to large
realistic document collections with queries and relevance judgments. The TREC collections
are a few gigabytes in size; for example, the collection used for the third TREC competition is
over three gigabytes and contained over one million documents on many di�erent topics [34].
Before TREC, test collections were only a few megabytes. In the TREC competition, various
teams test their products against one another. The competition has sparked a wealth of new
ideas.

The SMART group has been among the top competitors in every TREC competition;
however, they have had to improve their system to keep up.

One modi�cation is the use of term phrases in addition to individual terms. Speci�cally,
let any pair of adjacent non-stop words be a potential phrase. The �nal set of term phrases
are those potential phrases that appear in 25 documents or more. This may also a�ect
normalization [10].

One of the di�culties in information retrieval is forming the query; it generally contains
only a few terms and can make retrieval extremely di�cult. A number of competitors,
including SMART, use something called massive query expansion. The idea is to add many
terms to the query | the problem is determining those terms. Thesaurus look-up is one
possible method, but it can give misleading results for words that have multiple meanings,
for example, \foot." The method used in TREC is interesting because it did not work on
smaller test sets. In this case, the �rst few documents, say 25, from the search with the
normal query are assumed to be relevant. Terms from these documents are then used in
some way to form a new query with many more terms and the search is repeated. This
method works in TREC because the �rst few documents are relevant. In smaller test sets,
that is not usually the case [10].

Another di�culty in the vector space model is the representation of documents of varying
length. A long document may cover many topics, but each term would have a very small
weight if column normalization is done (as is done in the SMART \ltc" weighting). Singhal et
al. [61] noted that, in the TREC collection, longer documents are statistically more likely
to be relevant than shorter documents. This is because longer documents tend to cover
more subjects. Two new weighting schemes were proposed based on two of SMART's best
competitors: OKAPI and INQUERY. These weightings were presented in Section 7.2.3. In
tests, the new weightings did better than the SMART \ltc" weightings [61]. We included
these methods in our own tests. The OKAPI weighting did better than the best of all the
other weightings tested on the CRANFIELD and CISI data. The INQUERY weighting did
not do well on any test set. Both of these weightings were originally designed for very large
document collections, so it is not surprising that the INQUERY weighting does poorly. The
constants should probably be chosen di�erently for short documents like the ones in our test
sets.

Notice that the Okapi weight, using the modi�ed de�nition of dj , breaks into local and
global components. The INQUERY weight, on the other hand, is slightly too complicated to
break into these components. The fraction on the far right, which is almost a global weight,
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is only multiplied by part of the expression.
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Chapter 8

Latent Semantic Indexing

In the previous chapter, we described the vector space model for information retrieval. In this
chapter we will describe an improvement to this model known as latent semantic indexing and
show how it can be improved using the semi-discrete decomposition described in Chapter 6.
This chapter consists of material taken (sometimes verbatim) from Kolda and O'Leary [38,
39].

8.1 Introduction

Oftentimes in information retrieval, users are searching for documents about a concept that
is not accurately described by their list of keywords. For example, a query on a term such as
\Mark Twain" is unlikely to retrieve documents that only mention \Samuel Clemens." We
might know that these are the same people, but the information retrieval systems have no
way of knowing. Latent semantic indexing (LSI) is an approach to retrieval that attempts
to automatically discover latent relationships in the document collection.

LSI is based on the vector space model described in Chapter 7, but the m � n term-
document matrix is replaced by a low-rank singular value decomposition (SVD) approx-
imation (see Section 6.5 for more about the SVD) [17]. This approximation to the term-
document matrix is optimal in the sense of minimizing the distance between that matrix and
all rank-k matrices. LSI has performed well in both large and small tests; see, for example,
Dumais [21, 22].

Thus far, only the singular value decomposition and its relatives, the ULV and URV
decompositions [2], have been used in LSI. We propose using a very di�erent decomposi-
tion, the semi-discrete decomposition (SDD) described in Chapter 6. This decomposition is
constructed via a greedy algorithm and is not an optimal decomposition in the sense that
it minimizes with respect to any norm; however, for equal query times, the SDD does as
well as the SVD method and requires approximately one-tenth the storage. The trade-o� is
that the SDD takes substantially longer to compute for sparse matrices, but this is only a
one-time expense. Computational comparisons with the SVD are given in Section 8.4.

In many information retrieval settings, the document database is constantly being up-
dated. Much work has been done on updating the SVD approximation to the term-document
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matrix [4, 49], but it can be as expensive as computing the original SVD. E�cient algorithms
for updating the SDD are given in Section 8.5.

8.2 LSI via the SVD

LSI is an improvement on the vector space model. In LSI, we can use a matrix approximation
to the term-document matrix generated by the SVD. The SVD is described in Section 6.5.
It can be shown that Ak is the best rank-k approximation to A in the Frobenius norm and
in the Euclidean norm [30].

The approximation matrix is a \noisy" version of the original matrix. Suppose that
\Clemens" and \Twain" often appear together in the document collection. If we then have
one document that only mentions \Twain," then ideally the approximation will add some
noise to the \Clemens" entry as a result of compressing the rank of the matrix. The amount
of noise depends on the size of k. For very small values of k, there is lots of noise | usually
too much | and as k grows, the noise gets smaller until it completely disappears. At some
intermediate value of k, we have about the right amount of noise.

We can process queries using our approximation for A:

s = qTA � qTAk

= qTUk�kV
T
k

= (qTUk�
�
k )(�

1��
k V T

k )

� ~qT ~A:

The scalar � controls the splitting of the �k matrix and has no e�ect unless we re-normalize
the columns of ~A. We will experiment with various choices for � and re-normalization in
Section 8.4.1.

The SVD has been used quite e�ectively for information retrieval, as documented in
numerous reports. We recommend the original LSI paper [17], a paper reporting the e�ec-
tiveness of the LSI approach on the TREC-3 dataset [21], and a more mathematical paper
[4] for further information on the SVD for LSI.

8.3 LSI via the SDD

The SVD produces the best rank-k approximation to a matrix, but generally, even a small
SVD approximation requires more storage than the original matrix if the original matrix
is sparse. To save storage and query time, we propose replacing the SVD by the SDD,
described in Chapter 6. This decomposition does not reproduce A exactly, even if k = n,
but the rank-k approximation can use substantially less storage. The SDD requires only the
storage of 2k(n + m) values from the set f�1; 0; 1g and k scalars. An element of the set
f�1; 0; 1g can be expressed using log2 3 bits, although our implementation uses two bits per
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element for simplicity. Furthermore, the SDD requires only single precision scalars because
it is a self-correcting algorithm; on the other hand, the SVD has been computed in double
precision accuracy for numerical stability. Assuming that double precision scalars require
8 bytes and single precision scalars require 4, and packing 8 bits in a byte, we obtain the
following storage comparison between a rank-k SVD and SDD approximation to an m � n
matrix:

Method Component Total Bytes
U km double precision numbers

SVD V kn double precision numbers 8k(m+ n + 1)
� k double precision numbers
X km numbers from f�1; 0; 1g

SDD Y kn numbers from f�1; 0; 1g 4k + 1
4
k(m+ n)

D k single precision numbers

We evaluate queries in much the same way as we did for the SVD, by computing s = ~qT ~A,
with

~A = D1��
k Y T

k ; ~q = D�
kX

T
k q:

Again, we generally re-normalize the columns of ~A.
For decompositions of equal rank, processing the query for the SDD requires signi�cantly

fewer 
oating-point operations than processing the query for the SVD:

Operation SDD SVD
Additions k(m+ n) k(m+ n)

Multiplications k k(1 +m+ n)

If we re-normalize the columns of ~A then each each method requires n additional multiplies
and storage of n additional 
oating point numbers.

8.4 Computational Comparison of LSI Methods

In this section, we present computational results comparing the SDD- and SVD-based LSI
methods. All tests were run on a Sparc 20. Our code is in C, with the SVD taken from
SVDPACKC [3]. We will compare the SDD- and SVD-based LSI methods using the same
test sets as we did in the last chapter.

8.4.1 Parameter Choices

We have two parameter choices to make for the SDD and SVD methods: the choice of the
splitting parameter �, and the choice of whether or not to re-normalize the columns of ~A.
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SDD SVD
Re-Normalize? Re-Normalize?

� Yes No Yes No
0 62.1 61.2 65.1 64.2
0.5 62.6 61.2 64.7 64.2
-0.5 57.9 61.2 64.7 64.2
1.0 61.7 61.2 64.2 64.2
-1.0 48.6 61.2 62.3 64.2

Table 8.1: Mean average precision for the SDD and SVD methods with di�erent parameter
choices on the MEDLINE data set with k=100 and weighting lxn.bpx.

We experimented with the SVD and SDD methods on the MEDLINE data set using the
weighting lxn.bpx. The results are summarized in Table 8.1. In all further tests, we will use
� = 0:5 with re-normalization for the SDD method and � = 0 with re-normalization for the
SVD method. We experimented using other weighings and other data sets and con�rmed
that these parameter choices are always best or very close to it.

8.4.2 Comparisons

We tried the SDD and SVD methods with a number of weighings. We selected these par-
ticular weighings for testing in LSI based on their good performance for the vector space
method (see Chapter 7), but we excluded those that included any global weighting on the
term-document matrix. We present mean average precision results in Table 8.2 using a rank
k = 100 approximation in each method; this table also includes vector space (VS) results for
comparison.

MEDLINE CRANFIELD CISI
Weight SDD SVD VS SDD SVD VS SDD SVD VS
lxn.bfx 62.6 64.6 54.6 35.7 40.4 45.5 15.6 16.6 17.7
lxn.bpx 62.6 65.1 54.6 35.6 39.9 45.5 15.2 16.9 17.8
lxn.lfx 61.2 64.0 53.7 35.8 40.3 45.6 16.0 16.6 18.2
lxn.lpx 61.3 64.3 53.8 35.5 40.1 45.7 15.5 16.9 18.3
lxn.tfx 60.9 63.5 53.2 35.7 40.2 45.6 16.3 16.9 18.4

lxn.tpx 60.9 63.8 53.4 35.4 39.9 45.6 15.7 17.0 18.3
cxx.bpx 57.9 59.6 53.6 32.9 38.9 43.4 17.1 17.9 17.5
cxn.bfx 58.4 62.5 53.6 33.1 38.7 44.1 17.8 16.5 17.4
cxn.bpx 58.4 63.0 53.6 32.6 38.7 43.4 18.1 17.6 17.5
cxn.tfx 56.8 61.5 52.5 33.3 38.8 43.9 17.1 16.9 18.2
cxn.tpx 57.0 61.8 52.6 32.7 38.2 43.3 17.1 17.7 18.2

Table 8.2: Mean average precision results for the SDD and SVD methods with k=100.
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To continue our comparisons, we select a \best" weighting for each data set. In Table 8.2
we have highlighted the \best" results for each data set in boldface type. We will use only
the corresponding weighings for the remainder of the paper, although further experiments
show similar results for other weighings.

In Figures 8.1 { 8.3, we compare the SVD and SDD methods on the data sets.
In Figure 8.1, we present results for the MEDLINE data. The upper right graph plots the

mean average precision vs. query time, and the upper left graph plots the median average
precision vs. query time. (The query time is the total time required to execute all queries as-
sociated with the data set.) Observe that the SDD method has maximal precision at a query
time of 3.4 seconds, corresponding to k = 140, a mean average precision of 63.6 and a median
average precision of 71.4. The SVD method reaches its peak at 8.4 seconds, corresponding
to k = 110, and mean and median average precisions of 65.5 and 71.7 respectively.

In terms of storage, the SDD method is extremely economical. The middle left graph plots
mean average precision vs. decomposition size in megabytes (MB), and the middle right graph
plots median average precision vs. the decomposition size. Note that a signi�cant amount of
extra storage space is required in the computation of the SVD; this is not re
ected in these
numbers. From these plots, we see that even a rank-30 SVD takes 50% more storage than a
rank-600 SDD, and each increment of 10 in rank adds approximately 0.5 MB of additional
storage to the SVD. The original data takes only 0.4 MB, but SVD requires over 1.5 MB
before it even begins to come close to what the SDD can do in less than 0.2 MB.

The lower left graph illustrates the growth in required storage as the rank of the de-
composition grows. For a rank-600 approximation, the SVD requires over 30 MB of storage
while the SDD requires less than 1 MB.

It is interesting to see how good these methods are at approximating the matrix. The
lower right graph shows the Frobenius norm (F-norm) of the residual, divided by the Frobe-
nius norm of the original matrix, as a function of storage (logarithmic scale). The SVD
eventually forms a better approximation to the term-document matrix, making it behave
more like the vector space method. This is not necessarily desirable.

The CRANFIELD dataset is troublesome for LSI techniques; they do not do as well as
the vector space method. From the upper two graphs in Figure 8.2 we see that, for equal
query times, the SDD method does as well as the SVD method. The other graphs show
that, as in the MEDLINE test, the SDD is much more economical in terms of storage and
achieves a somewhat less accurate approximation of the matrix.

In Figure 8.3 we compare the SVD and SDD methods on the CISI data. The SDD method
is better overall than the SVD method in terms of query time, and its mean average precision
peaks higher than the SVD method | 19.1 versus 18.3. Again, the storage di�erences are
dramatic.

Table 8.3 compares the two methods for the query time at which the SDD method peaks
on mean average precision. On all three data sets, the SDD has higher mean and median
precisions than the SVD. Since all the methods have similar performance in terms of the mean
and median average precision, observe that the trade-o� is in the decomposition computation
time and the decomposition storage requirement; the SVD is much faster to compute, but
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Figure 8.1: A comparison of the SVD (o) and SDD (*) on the MEDLINE data set. We plot
60 data points for each graph, corresponding to k = 10; 20; : : : ; 600. The dotted lines show
the corresponding data for the vector space method.

MEDLINE CRANFIELD CISI
SDD SVD SDD SVD SDD SVD

Query Time (Sec) 3.4 3.6 63.8 77.3 4.3 4.4
Dimension (k) 140 20 390 210 140 30
Mean Avg Prec 63.6 51.8 44.9 44.5 19.1 15.2
Median Avg Prec 71.4 55.7 37.3 37.4 19.4 12.2

Decomp Storage (MB) 0.2 1.1 0.6 10.1 0.2 1.7
Decomp Time (Sec) 245.4 4.7 1313.8 91.5 279.0 13.0

Rel F-Norm of Resid 0.85 0.90 0.63 0.59 0.85 0.89

Table 8.3: Comparison of the SDD and SVD methods at the query time where the SDD has
the highest mean average precision.
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Figure 8.2: A comparison of the SVD (o) and SDD (*) on the CRANFIELD data set. We
plot 40 data points for each graph, corresponding to k = 10; 20; : : : ; 400. The dotted lines
show the corresponding data for the vector space method.
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Figure 8.3: A comparison of the SVD (o) and SDD (*) on the CISI data set. We plot 49
data points for each graph, corresponding to k = 10; 20; : : : ; 490. The dotted lines show the
corresponding data for the vector space method.
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the SDD is much smaller.
The results on the three data sets can be summarized as follows: the SDD method is

competitive with the SVD method for information retrieval. For equal query times, the SDD
method generally has a better mean and median average precision. The SDD requires much
less storage and may be the only choice when storage is at a premium. The only disadvantage
is the long time required for the initial decomposition, but this is generally a one-time-only
expense. Further research should be done on improving the decomposition algorithm.

8.5 Modifying the SDD when the Document Collec-

tion Changes

Thus far we have discussed the usefulness of the SDD on a �xed document collection. In
practice, it is common for the document collection to be dynamic: new documents are added,
and old documents are removed. Thus, the list of termsmight also change. In this section, we
will focus on the problem of modifying a SDD decomposition when the document collection
changes.

SVD-updating has been studied by O'Brien [49]. He reports that updating the SVD takes
almost as much time as re-computing it, but that it requires less memory. His methods are
similar to what we do in Method 1 in the next section.

8.5.1 Adding or Deleting Documents

Suppose that we have an SDD approximation for a document collection and then wish to add
more documents. Rather than compute a new approximation, we will use the approximation
from the original document collection to generate a new approximation for the enlarged
collection.

Let m1 and n1 be the number of terms and documents in the original collection, n2 be the
number of documents added, and m2 be the number of new terms1. Let the new document
collection be represented as

A =

"
A11 A12

A21 A22

#

where

� A11 is an m1 � n1 matrix representing the original document collection,

� A12 in an m1 � n2 matrix representing the new documents indexed by the m1 terms
used in the original collection,

1Recall that a term is any word which appears at least twice in the collections and is not a stop word.

The addition of new documents may add new terms, some of which may have appeared once in the original

document collection.
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� A21 is an m2 � n1 matrix representing the original documents indexed by the newly
introduced terms, and

� A22 is an m2�n2 matrix representing the new documents indexed by the newly intro-
duced terms.

Assume that X(1), D(1), and Y (1) are the components of the SDD approximation for
A11. We propose two methods for updating this decomposition. Each methods is a two-step
process: In the �rst step, we incorporate the new documents using the existing terms, and
in the second step, we incorporate the new terms (for both old and new documents).

Method 1: Append rows to Y (1) and X(1). The simplest update method is to keep the
existing decomposition �xed and just append new rows corresponding to the new terms and
documents. The D will not be recomputed, so the �nal D is given by

D = D(1):

To incorporate the documents (the �rst step), we want to �nd Y (2) 2 Sn2�k such that

h
A11 A12

i
� X(1)D

"
Y (1)

Y (2)

#T
:

Let kmax be the rank of the decomposition desired; generally this is the same as the rank
of the original decomposition. For each value of k = 1; : : : ; kmax, we must �nd the vector y
that solves

min
y2Sn2

kA(c) � dxyTkF ;

where A(c) = A12�X(1)
k�1Dk�1(Y

(2)
k�1)

T , x is the kth column of X(1), and d is the kth diagonal
element of D. We never access A11, and this may be useful in some situations. The solution
y becomes the kth column of Y (2). The �nal Y is given by

Y =

"
Y (1)

Y (2)

#
:

To incorporate the terms, we want to �nd X(2) 2 Sm2�k such that

A =

"
A11 A12

A21 A22

#
�
"
X(1)

X(2)

#
DY T :

We �nd X(2) in a analogous way to �nding Y (2). For each k = 1; : : : ; kmax, we must �nd the
vector x that solves

min
x2Sm2

kA(c) � dxyTkF ;

where A(c) =
h
A21 A22

i
�X

(2)
k�1Dk�1(Yk�1)T , y is the kth column of Y , and d is the kth

diagonal element of D. Again, we never access A11 for this computation. The �nal X is
given by

X =

"
X(1)

X(2)

#
:
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Method 2: Re-Compute Y and D, then X and D. Another possible method is to
completely re-compute Y and D (holding X �xed) to incorporate the documents, and then
recompute X and D, holding Y �xed.

Speci�cally, to incorporate the documents, we �rst want to �nd D(2) and Y such thath
A11 A12

i
� X(1)D(2)Y;

where Y has no superscript because it will be the �nal Y .
To do this, let kmax be the rank of the decomposition desired. For each k = 1; : : : ; kmax,

we must �nd the d and y that solve

min
d>0
y2Sn

kA(c) � dxyTkF ;

where A(c) = A � X
(1)
k�1D

(2)
k�1Y

T
k�1 and x is the kth column of X(1). The solutions d and y

become the kth diagonal element of D(2) and the kth column of Y respectively.
To incorporate the documents, we wish to �nd X and D such that

A =

"
A11 A12

A21 A22

#
� XDY T :

This is similar to how we computed Y and D(2) in the �rst step. For each k = 1; : : : ; kmax,
we must �nd the d and x that solve

min
d>0
x2Sm

kA(c) � dxyTkF ;

where A(c) = A�Xk�1Dk�1Y
T
k�1 and y is the kth column of Y . The solutions d and x become

the kth diagonal element of D and the kth column of X respectively.

Neither method has any inner iterations, and so both are fast. We tried each update
method on a collection of tests derived from the MEDLINE data. We split the MEDLINE
document collection into two groups. We did a decomposition on the �rst group of documents
with k = 100, then added the second group of documents to the collection, and updated the
decomposition via each of the two update methods. The results are summarized in Table 8.4.
The second method is better, as should be expected since we are allowing more to change.
For the second method, the decrease in mean average precision is not very great when we add
only a small number of documents. As the proportion of new documents to old documents
grows, however, performance worsens.

If we wish to delete terms or documents, we simply delete the corresponding rows in the
X and Y matrices.

8.5.2 Iterative Improvement of the Decomposition

If we have an existing decomposition, perhaps resulting from adding and/or deleting doc-
uments and terms, we may wish to improve on this decomposition without actually re-
computing it. We consider two approaches.
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Method 1 Method 2
Documents Decomp Time Mean Time Mean
Old New Time (Sec) (Sec) Avg Prec (Sec) Avg Prec
1033 { 150.5 { 62.18 { 62.18
929 104 138.3 10.5 60.10 13.8 61.83
826 207 122.1 10.4 58.44 13.7 61.80
723 310 103.6 10.2 54.59 13.4 62.46
619 414 94.2 10.2 47.70 13.2 59.28
516 517 77.5 10.1 39.11 12.9 58.76
413 620 60.7 9.9 34.00 12.6 58.83
309 724 45.6 9.5 18.98 12.1 57.19
206 827 26.2 9.6 18.50 11.7 52.29
103 930 14.9 9.4 16.26 11.1 51.38

Table 8.4: Comparison of two update methods on the MEDLINE data set with k = 100.

Method 1: Partial Re-Computation In order to improve on this decomposition, we
could reduce its rank by deleting 10% of the vectors and then recompute them using our
original algorithm. This method's main disadvantage is that it can be expensive in time. If
performed on the original decomposition, it has no e�ect.

Method 2: Fix and Compute. This method is derived from the second update method.
We �x the current X and re-compute Y and D; we then �x the current Y and re-compute
the X and D. This method is very fast because there are no inner iterations. This can be
repeated to further improve the results. If applied to an original decomposition, it would
change it.

We took the decompositions resulting from the second update method in the last sub-
section and applied the improvement methods to them. We have a rank-100 decomposition.
For the �rst improvement method, we re-computed 10 dimensions. For the second improve-
ment method, we applied the method once. The results are summarized in Table 8.5. If we
have added only a few documents, the �rst method improves the precision while the second
method worsens it. On the other hand, if we have added many documents, then the second
method is much better. The �rst method could be improved by re-computing more dimen-
sions, but this would quickly become too expensive. The second method greatly improves
poor decompositions and is relatively inexpensive. It can be applied repeatedly to further
improve the decomposition.
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Method 1 Method 2
Documents Prev Mean Time Mean Time Mean
Old New Avg Prec (Sec) Avg Prec (Sec) Avg Prec
1033 { 62.16 13.5 61.85 22.9 62.16
929 104 61.83 13.4 61.22 20.8 61.45
826 207 61.80 13.5 62.03 19.8 61.51
723 310 62.46 13.4 61.89 21.6 61.91
619 414 59.28 13.6 61.42 19.6 58.70
516 517 58.76 13.5 59.32 19.2 59.43
413 620 58.83 13.4 61.55 20.2 59.68
309 724 57.19 13.6 59.59 20.1 57.94
206 827 52.29 13.4 57.63 21.2 54.35
103 930 51.38 13.4 56.46 22.7 53.88

Table 8.5: Comparison of two improvement methods on the MEDLINE data set with k =
100.
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Chapter 9

Conclusions

We have explored two applications of limited memory methods. In each case, we considered
theoretical and experimental results.

For optimization problems, we characterized which limited-memory quasi-Newton meth-
ods �tting a general form (3.1) have the property of producing conjugate search directions on
convex quadratics. We showed that limited-memory BFGS is the only Broyden Family mem-
ber that has a limited-memory analog with this property. We considered update-skipping,
something that may seem attractive in a parallel environment. We show that update skip-
ping on quadratic problems is acceptable for full-memory Broyden Family members in that
it only delays termination, but that we lose the property of �nite termination if we both
limit memory and skip updates. Then we introduced simple-to-implement modi�cations of
the standard limited-memory BFGS algorithm that are promising on test problems.

There are a number of directions for future work in this area. The results that have
been presented here apply to quasi-Newton methods that use an exact line search, but it
would be useful to know what happens with methods that are not perfect. This extends
further into the realm of possible limited-memory quasi-Newton methods for solving non-
linear equations. Little work has been done in this area although there is promise for exciting
new methods. Other potential work includes developing the hybrid SR1-BFGS method
previously mentioned and implementing the new limited-memory methods in parallel.

In the information retrieval application, we introduced a semi-discrete matrix decompo-
sition for use in LSI. We showed that the approximation generated by the SDD converges
linearly to the true matrix.

We showed how the SDD can be used to improve the performance of LSI. For equal
query times, the SDD-LSI method performs as well as the original SVD-LSI method. The
advantage of the SDD method is that the decomposition takes very little storage and the
query times are faster; the disadvantage is that the initial time to form the decomposition
is large. Since decomposition is a one-time expense, we believe that the SDD-LSI algorithm
will be quite useful in application.

We also introduced methods to dynamically change the SDD decomposition if the doc-
ument collection changes and methods to improve the decomposition if it is found to be
inadequate.
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The LSI-SDD method is an exciting new approach to information retrieval, and future
work in this area would be to develop a full-scale system that can index gigabytes of text.
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Appendix A

Line Search Parameters

Table A.1 give the line search parameters used for our code. Note that in the �rst iteration,
the initial steplength is kg0k�1 rather than 1.0.

Variable Value Description
STP 1.0 Step length to try �rst.
FTOL 1:0 � 10�4 Value of !1 in Wolfe conditions.
GTOL 0.9 Value of !2 in Wolfe conditions.
XTOL 1:0 � 10�15 Relative width of interval of uncertainty.
STPMIN 1:0 � 10�15 Minimum step length.
STPMAX 1:0� 1015 Maximum step length.
MAXFEV 20 Maximum number of function evaluations.

Table A.1: Line Search Parameters
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Appendix B

Pseudo-Code

B.1 L-BFGS: Algorithm 0

The pseudo-code for the computation of dk = �Hkgk at iteration k for L-BFGS is given in
Figure B.2. The update of H is also handled implicitly in this computation.

B.2 Varying m iteratively: Algorithms 1{4

Suppose that mk denotes the number of (s; y) pairs to be used in the kth update. Then
simply chose sze as the minimum of oldsze + 1 and mk before computing dk.

B.3 Disposing of Old Information: Algorithm 5

If the disposal criterion is met at iteration k, set oldsze to zero and sze to one before
computing dk.

B.4 Backing Up in the Update to H: Algorithms 6-11

If we are to back-up at iterations k, set oldsze to the one less than the previous value of
sze and set sze as the minimum of oldsze + 1 and m, as usual.

B.5 Merging s and y Information in the Update: Al-

gorithms 12 and 13

Merging is the most complicated variation to handle. Before we determine the newest sze
and before we compute dk, we execute the pseudo-code given in Figure B.1. We then set
oldsze to one less than the previous value of sze and set sze as the minimum of oldsze +
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% Compute d_k = -H_k g_k

if (sze == 0)

d = -g;

else

% Step 0

idx = 2 - (sze - oldsze);

% Step 1

S = [S(:,idx:oldsze),s]; Y = [Y(:,idx:oldsze),y];

% This is needed for Step 3 before we overwrite Stg and Ytg

Stoldg = [Stg(idx:oldsze); s'*oldg];

Ytoldg = [Ytg(idx:oldsze); y'*oldg];

% Step 2

Stg = S'*g; Ytg = Y'*g;

% Step 3

Sty = Stg - Stoldg;

Yty = Ytg - Ytoldg;

% Step 4

rho = 1.0/Sty(sze);

invU = [invU(idx:oldsze,idx:oldsze) - ...

rho*invU(idx:oldsze,idx:oldsze)*Sty(1:sze-1)

zeros(1,sze-1) rho];

% Step 5

YtY = [YtY(idx:oldsze,idx:oldsze) Yty(1:sze-1)

(Yty(1:sze-1))' Yty(sze)];

% Step 6

D = [D(idx:oldsze), Sty(sze)];

% Step 7

gamma = Sty(sze)/Yty(sze);

% Step 8

p1 = invU*Stg;

p2 = invU*(gamma*YtY*p1 + diag(D)*p1 - gamma*Ytg);

% Step 9

d = gamma*Y*p1 - S*p2 - gamma*g;

end

Figure B.1: MATLAB pseudo-code for the computation of d = Hg in L-BFGS. sze is
the number of s vectors available for the update this iteration and oldsze is the number
of s vectors that were available the previous iteration. For L-BFGS, sze is chosen as the
minimum of oldsze + 1 and m (the limited-memory constant).
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1 and m, as usual. We are assuming we are at iteration k, but that the newest values of s
and y have not yet been added to S and Y.

% Execute before choosing new value for sze

% and before computing d

S(:,sze-1) = S(:,sze) + S(:,sze-1);

Y(:,sze-1) = Y(:,sze) + Y(:,sze-1);

Stg(sze-1) = S(:,sze-1)'*g;

Ytg(sze-1) = Y(:,sze-1)'*g;

delta = S(:,sze-1)'*Y(:,sze-1);

rho = 1.0/delta;

invU = ...

[invU(1:sze-2,1:sze-2) - ...

rho*invU(1:sze-2,1:sze-2)*S(:,1:sze-2)'*Y(:,sze-1)

zeros(1,sze-2) rho];

temp = YtY(1:sze-2,sze-1) + YtY(1:sze-2,sze);

YtY = [YtY(1:sze-2,1:sze-2) temp

temp' Y(:,sze-1)'*Y(:,sze-1)];

D = [D(1:sze-2), delta];

Figure B.2: MATLAB pseudo-code for the merge variation. This �xes the values of the
components that are used in the computation of dk.

B.6 Skipping Updates to H: Algorithms 14{16

To skip the update at iteration k, set sze to oldsze. Compute Stg and Ytg before Step 0
and then skip to Step 8 and continue.
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